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SUMMARY

The overall objectiﬁe of this'progrém is to develop an accurate
digital computer program update and correction logic coupled with a
spacecraft thermal analysis prediction capability; the program consists
of three consecutive phases. Phase‘I is an investigation/feasibility
study period whereby the feasibility of analytical error analysis

as applied to thermal network solutions is established.

A literature search revealed two basic classes of correlation
methods, one-pass and sequential. Within the framework of each class
are numerous variations, each perhaps éuited for specific requirements.
A number of potentially suitable correlation methods selected from
a list of techniques reported in literature were studied and screened,
resulting in the selection of five methods for further study. These
methods were: (1) Kalman filter; (2) Program MAFTA; (3) Quasilinearization;
(4) Least Squares with net heat flux residual; and (5) Regression Analysis.

The latter two were studied to obtain baseline information.

The results in many respects were found to be quite promising and
in other respects, less so. The chief concern is the accommodation
of the sparsity of temperature measurements. It is also clear that
if a high percentage of temperature measurements are available
or that the measurements are properly located, either the one-pass
(Program MAFIA or Quasilinearization) or the sequential method (Kalman
filter) can satisfactorily correct the parameters of a thermal network.
However, the results were not of sufficient depth to realistically permit
the choice of one method over the other. As a result both the one-pass

method and the sequential method were recommended for further study.



NOMENCLATURE

[A] = yweighting matrix for the a priori estimates

[Al, Po = gtate error covariance matrix for the a priori estimates
[B], B = measurement weighting'matrix (time varying gain)
Ci = heat capacitance for node i

I = jdentity matrix

[J}, J = state error covariance matrix

[M], M, H = measurement matrix

Q = heat input for node i

Ti = temperature at node i

Ti = random noise corrupted temperatﬁre measurement at node i
G}, U = gtate updating matrix

[w] = weighting matrix for the random measurement noise
[W]l, R = measurement noise covariance matrix

7;3 | = linear conductor joining nodes i and j

bij = radiation conductor joining nodes i and j

P = probability function

B = parameter vector

t = time

{x}, x = gtate vector

{y*}, y* = random noise corrupted measurement vector
- [¢] = gtate transition matrix

n, W, {W} = random noise vector

z = gummation

I = product

e 1l = o'w

W
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1.0 INTRODUCTION

The program entitled 'Development of Digital Computer Program
for Thermal Network Correction' consists of three consecutive
phases: (1) Phase I, Investigation/Feasibility Study; (2) Phase II,
Program Development; and (3) Phase III, Demonstration and Application.
Each of these phases is of 6-months duration. Phase I is an investi-
gation/feasibility study period whereby the feasibility of analytical
error analysis as applied to thermal network solutions is established.
Phase II will be a programming effort to refine and code the NASA/MSC
approved error analysis approach(s). Phase III will an effort to evaluate
and demonstrate the capabilities of the computer program and sub-~routines

coded in Phase IT.

The overall objective of this program is to develop an accurate
computer program that updates and corrects a thermal network and
one that is coupled with a spacecraft thermal analysis prediction
capability. The analytical methods are to be developed with the
ultimate intent to use test/post-flight data for correlation with

analytical results.

Achievement of the objectives was considered to be best pursued
by the multi~step process as indicated by the three consecutive phases.
The Phase 1 effort was also segmented with literature search followed
by a number of screening procedures to arrive at a select group of
correlation methods that were studied in more detail. Related

tasks included programming the thermal model error assessment

considerations.

In the sections to follow are the results of the Phase I study

which is presented sequentially in the multi-step fashion.



2.0 REQUIREMENTS AND LITERATURE SURVEY

2.1 REQUIREMENTS

A literature search to be effective must accommodate the basic
objectives as well as the numerous constraints that are imposed. In
order to place the literature survey in a proper perspective, the
overall objectives of the present program and the basic constraints

to be followed are discussed.

2.1.1 Objective

The overall objective of the program is to develop an accurate
digital computer program update and correction logic coupled with
~a spacecraft thermal analysis prediction capability. The program
to be developed is to be specifically directed towards development
of analytical methods for computerized error and analysis and updating
of the thermal networks with test/post-flight data results used for

correlation of analytical simulation results.
2.1.2 Constraints

The basic constraints not only apply to the correlation methods
directly but from practical considerations must also apply to
system programming aspects and theoretical model characteristics.

The more important considerations are discussed below:
2,1.2.1 Experimental Data

Experimental data are necessary to evaluate the correlation
methods that are to be studied in detail. However, the Phase I computer
results are to be used in lieu of experimental data. Since the
numerical results are near-perfect, subject to only numerical errors,
the correlation method(s) that is (are) ultimately selected for
Phase II must also accommodate the inaccuracies of experimental data

that are to be provided by NASA/MSC.

At the beginning of Phase I, the characteristics of the
experimental data were not defined since since computer results were
to be used during this phase, but it was recognized that the experimental

data must be defined before the correction methods can be evaluated.
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At present, it is assumed that experimental data will be smoothed
by NASA/MSC and a tolerance band will be specified. The nature of
the tolerance band has not been specified but it is assumed that

it will be a random noise.

Another aspect of the experimental data is sparsity. It is
recognized that temperature data will not be available at every
nodal location used in the theoretical model but the extent of the
sparsity depends upon the type of test. For example, an engineering
model test will have many more measurements than say a flight article.
Thus the correlation method to be a practical tool must account for
the sparsity that exists on all thermal tests. It must also be recognized
that the larger the sparsity the less accurate will be the correlation

methods.
2.1.2.2 Systems Programming

A correlation method suitable for a small model of limited
number of parameters may not be suitable for a large model of many
parameters. The objectives of the present study present particular
problems from even size considerations alone since the ultimate objective
is to update a thermal model that may have as many as 1500 nodes; the
number of parameters will be in the thousands. Processing of the data
will be enormous, let alone updating the network. Thus the
system programming aspects will be equally as important as the
correlation method itself. Some of the system aspects would be the
identification and bounding of the soft parameters, inéut of the

test data, parameter correction subroutine, rerun and verification.
2.1.2.3 Theoretical Model

The types of errors that make-up the difference between measured
and predicted temperature are mainly three in nature; these sources
of errors are: (1) functional form of the ﬁodel; (2) measurement
errors; and (3) incorrect parameter values. If the functional
form of the model is not sufficiently accurate, a new model must
be constructed. Thus the parameter estimation methods will be
applicable only if the errors are confined to measurement errors,

biased and random, and parameter inaccuracies.
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The physical system considered in the present study is one
that can be reduced to a theoretical model which in turn can be
represented by a thermal network of resistances and capacitances.
The set of equations that describe the model can be expressed

as follows:

r

T
i » A
c =Q, +2 a, (T.-T.) +Z ob, (T, -T.") (2-1)
idt i j=1 ijtj i j=1 ij ] i
i=1,2,....,n
Tj = constant for h<j§y

The parameters to be corrected will be found among the Ci's,
the Qi's, the aij's, and bij's. Simultaneously, an appreciable
number of Ti's can be expected to be non-measured and thus considered to

be unknown.
2.2 LITERATURE SEARCH

The correction of thermal model parameters from noisy temperature
measurements belongs to the class of problems designated estimation
problems; the term noisy is defined here to mean random errors.

In general an estimation problem involves the identification and
estimation of the parameters and states of a physical system from

noisy measurements of some observable quantities of the system.

With the overall objectives and the basic constraints as general
guidelines, a technical literature search encompassed a number of
potential sources of information such as NASA STAR, Joint Automatic
Control Conferences, and Computer Conferences. Not surprisingly,
numerous articles in the general area of automatic control and
statistics were found that offered pertinent information related
to the problems of parameters correction. The literature search

- . . (1-6)*
revealed papers in regression analysis

squares (7—17), the method of recursive least square

(1,6,17),
: ’

, the method of least
(16f19)’ the

method of maximum likelihood
(6,17,20)

the method of Bayesian

(21-23)

estimation » the method of invariant imbedding the

* Superscript numbers refer to the references in the Bibliography Section
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method of quasilinearization(24’25)

(16,17,26-30)

» the method of Kalman filtering

, and sensitivity analysis which may be an integral part

of any parameter correction scheme (31’32). These methods

can be categorized into two different classes. One class denoted as
one-pass methods involves the estimation of parameters and states at

some epoch (time), whereby all the measurements are processed in one pass;
the methods in this class include regression analysis, least squares,
maximum likelihood and quasilinearization. The other denoted as sequential
methods involves the estimation of parameters and states sequentially,
whereby the measurement data are processed sequentially and new estimates
of the parameters are obtained after each set of measurements is
processed. The methods of sequential estimation include Kalman filtering,
invariant imbedding, and Bayesian estimation.. These methods are

discussed below but selected ones are presented in more detail in

the next section.

2.2.1 One-Pass Methods

The method of least squares is a classical method that is widely
used. In its simplest form, it involves the formation of a criterion
function, €, which is the sum of the squares of the difference between
the computed model response and a set, y, of m experimental obser-
vations of a scaler output. The observations can be weighed if
desired. The least squares estimate of the parameters, p, and
states, x, are defined as the values of p and x that minimize €.

The method of least squares has been used in such areas as the
determination of regression parameters in regression analysis, and
the estimation of states and parameters for both linear and nonlinear

dynamic systems.

To estimate the temperature, some scheme must be incorporated
such that the heat balance equations are solved with the measured
temperatures as boundary conditions; this then becomes a multi-point
boundary value problem. To solve the multi-point boundary value

(26,25)

problem, the method of quasilinearization can be applied
method of quasilinearization in essence in a method whereby the
governing nonlinear heat balance differential equations are linearized

by the lst order Taylor series expansion about some nominal temperature
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profiles and nominal parameter values. The nominal values are defined
by the a priori estimaté of the initial conditions. The linearized
heat balance equations are solved assuming unknown parameter values

and initial conditions. Improved temperature profiles are obtained

as a function of these knowﬁs. These unknowns are then determined in
the least squares sense by minimizing the square of the difference
between the improved temperature profiles and the measured temperatures.
After all the data have been processed a new and better estimate of the
unknowns is obtained. The results are then used to obtain new tempera-
ture profiles and the whole problem is rerun. This process continues
(generally several times) until no further change in these unknowns

are observed. This method also applies when the temperature is not

measured at every nodal location.

(12)

Toussaint applied the method of least squares for the
correction of thermal model parameters. However, in lieu of using
temperature as the measurement vector, Toussaint minimized the net
heat flux residual at each nodal location over some specified time
span. Unfortunately, this method will not accommodate the condition
of sparse measurements. Toussaint concluded that when no measurement
error is taken into account, a maximum of two parameters per node
can be corrected.

Allison(ls’la)

applied the method of least squares to the problem
of parameter estimation by using input-output measurements. This was
done by forcing a mathematical model of the system with the measured
input and adjusting model parameters to minimize the mean squared
difference between the measured and model outputs. Allison shows

that the classical sensitivity analysis method for minimizing the mean

squared error is identical in principle to the method of quasilinearization.

The solution to a least squares estimate in general involves the
solution of a set of n algebraic equations (the normal equations). When
the number of parameters is small and the equations are well conditioned,
one can use any reasonable scheme to obtain the solution on a digital
computer. When the number is large and the equations are ill-conditioned,
it is very difficult to arrive at a solution. Even if a solution is

obtained, it may be difficult to ascertain the validity of the solution
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in either a numerical or statistical sense. Many methods have been
proposed to solve this problem. Roucﬁ(7) proposed a numerical scheme
whereby the parameters which make the problem ill-conditioned are elimin-
ated as the set of normal equations is being solved by using the Gauss

(8)

elimination scheme. Golub proposed a method of matrix partition based

on an orthogonal Householder transformations(33).

2.2.2 Sequential Methods
(26,28)

(27)

Kalman » Kalman and Bucy were the first to propose a
scheme whereby the states and parameters of a linear dynamic system

can be estimated sequentially. This is the method of Kalman

filtering which is a minimum variance estimate whereby the variances

of the states and parameters to be estimated are minimized. The Kalman
filter can also handle nonlinear systems. This is done by linearizing
the nonlinear equations about some nominal trajectory (temperature

history for the present study)(l6’29). (30)

Browne has applied the Kalman
filter to correct the parameters of a thermal model. In his study,

-he neglected the radiation coupling terms and thus eliminated the
nonlinearity in the governing heat balance differential equations.

This approximation allowed the direct application of the Kalman filter.

Numerical results were not presented in his paper.

2.2.3 Comment on the One-Pass and Sequential Methods

The essential difference between the one-pass estimate and
sequential estimate is that the former estimates the unknowns at
some epoch by expressing the unknowns at any time point'in terms
of the unknowns at the particular chosen epoch. The latter
estimates the unknowns at some time, t, and uses the new estimate
at time, t, to project it forward to some new t+1; this projected
estimate is used as the a priori estimate for the processing of data at

time, t+l. This process continues until all until all data are processed.

The nature of the estimation problem governs the choice between
the one-pass estimate and the sequential estimate. 1In general,
the sequential estimation scheme is primarily used for on line
estimation where the current estimate of the states and parameters
are desired rather than the states and parameters at some epoch

(time) is desired. In problems where large number of parameters are
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Involved (for example thermal nodel parameter estimations), it is some-
times preferable to use the sequential estimate since it only requires
the inversion of an m x m matrix where m is the number of nodes in the
in the model. The one-pass estimate necessitates the inversion of p x p
matrix where p is the sum of the number of parameters and the number

of nodes in the model, (p is often times very much greater than m).

Other sequential schemes have been developed for the estimation
of states and parameters. These are the recursive least squares
and invariant imbedding. The recursive least squares is a scheme
whereby the states and parameters of a system can be estimated in
a least squares sense without recalculating the entire least squares
problem when additional data are available. Invariant imbedding
is essentially an approximation method whereby the states and
parameters of nonlinear dynamic systems can be estimated using

the method of least squares.

The problem of states and parameters estimation can also be
viewed from probability theory. The classical method is the maximum

likelihood estimate(l’6’17)

whereby the value of the parameters or
variables to be estimated appearing in the probability distribution
function is chosen in such a way as to maximize the 1likelihood
function, and the likelihood function is the probability function

Ho(zo) formulated

when regarded as a function of the parameters.
the estimation problem from the Bayesian decision theoretic viewpoint.

In this formulation, the a posteriori conditional probability
distribution, p(x/y), is derived, and the optimal estimate is obtained by
evaluating the conditional mean, the median, or mode of the posteriori

conditional probability depending on the criterion function used.

Although each of these methods appears to be distinct, these
methods are indeed related. This relationship can be shown from
the identification of the governing parameters. For example, the
method of recursive least square can be identified with the method
of Kalman filtering if proper assumption is made of the a priori
estimate and that the weighting function on the measurement is
identified as the inverse of the measurement noise covariant

matrix. Upon proper manipulation of the governing equations, it
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is also possible to convert a sequential estimator to a one~-pass

estimator or vice versa.

Another important difference between the sequential estimate
and the one-pass estimate lies in the linearization of nonlinear
system. For the one-pass estimate, the linearization is made
about some nominal a priori estimate of the state at epoch (time).
Upon the processing of all the data, a new and better estimate at this
epoch (time) is obtained and used to provide the new a priori
estimate, and the problem is rerun. This process continues until
the change of the estimate as epoch (time) is within a specified
allowance. In the sequential estimate, a new estimate of the state
is obtained after each measurement is processed; this new estimate
is used to provide a new nominal trajectory. As more and more
measurements are processed, the estimated state and time value of
the state come closer together and the linearization assumption is

better and better satisfied(zg).

However, if the equations governing
the system is highly nonlinear and the linearized model is hot
correct, this will tend to drive the estimates slowly from the

time state. This will in itself introduce errors due to

(16)

nonlinearities .

Additional differences between the various methods studied
involved the use of a priori knowledge and the use of statistical
assumptions concerning the measurement noise and the states of the
system. The various methods that require the use of some form of
least squares formulation require no knowledge of the statistics
concerning the states and the measurement noise and requires no
a priori knowledge of the states and parameters. However, if a priori
knowledge of the unknown states and parameters and measurement noise
statistics are available, they can be incorporated in the calculation
respectively as additional measurements and measurement weighting

functions.

In applying these various methods to correct thermal model
parameters, an ideal situation would be the availability of measured
temperature histories for each of the nodes in the model. When measured

transient temperature histories for every node are available, theoretically,
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all the methods studied are applicable to the correction of thermal

model parameters. Often in thermal model testing, only a limited

number of nodes are measured, and it is necessary to correct the

thermal model parameters using these limited temperature measurements.
Theoretically all the methods studied with the exception of deterministic
methods and regression analysis are capable of handling this situation.
However, for the method of least squares, the criterion function to be

used must be the square of the difference between the measured temperature
and the computed temperature, not the net heat flux residual. The criterion

12)

function used by Toussaint( will not be able to handle this situation.

The method of maximum likelihood requires the knowledge of measurement
noise statistics and no a priori knowledge of the parameters.
If the measurement noise obey Gaussian statistics, it can be shown
that this method is equivalent to the method of least squares provided
the weighting function in the least squares formulation can be identified

. . . . (1,17
as the inverse of the measurement noise covariance matrlx( ’ ).

The method of Kalman filtering requires the assumption of a
priori knowledge of the unknown states and parameter and their
corresponding covariances; the measurement noise statistics is also

required.

The method of Bayesian estimation requires the knowledge of
a priori statistics concerning the unknown states and parameters
and the measurement noise statistics. If the unknown states and
the measurement noise obey Gaussian statistics, it can be shown that
this method and the method of Kalman filtering are equivalent upon

proper manipulation(17’20).

2.2.4 Sensitivity Analysis

Sensitivity analysis represents an integral part of any parameter
estimation (correction) scheme since it can have a number of
useful functions. Identification of hard and soft parameters
and evaluation of temperature variance due to the uncertainties
of the input information are two of the important functions. The
term soft parameter is defined here to mean a parameter that has

a larger uncertainty whereas a hard parameter is defined to mean
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a parameter with a very small uncertainty. Some of the parameter
correction scheme such as quasilinearization utilizes sensitivity
analysis directly. Excellent sources of information on sensitivity

analysis are references 31 and 32.

2.2.5 Summary

The literature search revealed two basic classes of correlation
methods, one pass and sequential; these methods have been applied
to small systems. Within the framework of each class are numerous
variations, each perhaps suited for specific requirements. The
requirements of the present program are unidue from primarily
size considerations, which is manifested by the large number of

temperatures and parameters that must be considered.

Since both the one-pass and sequential methods have been success-
fully applied to small non-thermal systems, application of these methods
to small thermal systems can also be expected to be successful with perhaps
the single concern being parallel resistors. 1In a thermal system,
conduction and radiation resistances in parallel are quite prevalent.
Application of these methods to a large thermal system remains

a major consideration,

In summary, the correlation methods revealed in literature
are basically similar and can be expected to apply to small thermal
systems. The choice between the one-pass and the sequential
methods would perhaps be dictated from numerical solution and
programming considerations. Variations within each class would
merely affect the basic numerical and programming problems. In the
section to follow, several of the more interesting and potentially
suitable methods are presented. From this group of techniques,
three were selected for a detailed examination by the use of the

five~ and twenty-node models.
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3.0 METHODS OF PARAMETER ESTIMATION

The literature survey as presented and discussed in the previous
section revealed two basic categories of correlation methods, one-pass and
sequential. Within each class are a number of variations to meet specific
needs. For example, if the experimental data is considered to be perfect
and the temperature is measured at every nodal location, a direct deterministic
approach can be utilized. On the other hand, if sparsity of temperature
measurements can be expected, a direct deterministic approach would not
be suitable. Noisy measurements present additional complexities that

cannot be accommodated by all of the techniques.

In the presentation to follow, the correlation methods are grouped
under the headings, one-pass and sequential methods. Within each class

are various methods which are discussed in some detail individually.
3.1 ONE-PASS METHODS

These methods involve the estimation of parameters and states at
some epoch whereby all the measurements are processed in one pass; several

of these methods are presented below.

3.1.1 Deterministic (Perfect Measurements and No-Sparsity)

The deterministic method requires accurate (if not perfect) temperature
measurements at each and every nodal location; if transient temperatures
are used, the temperature derivative must also be known accurately., If
the number of unknown parameters (excluding capacitances) are less than
or equal to the number of nodal temperatures, steady state heat balance
equations may be used; otherwise transient temperature data must be

utilized.

Consider the model heat balance equations (2-1); if the measured
temperatures were used in lieu of model temperatures, the heat flow at
the ith node would be zero only if the measured temperatures and the
coefficients were perfect. If all of the coefficients were not exact, the
net heat flux at the ith node would be a finite value, Ti(t), Equation

2-1 would be expressed as:
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dT, r r

= —_— _ b b -
Ti(t) Ci e Qi + E aij(Ti Tj) +.§ cbij(Ti Tj ) (3-1)
j=1 j=1
i=1, 2,.....,40
Tj = constant forn< j <r
a,, = a,,
ij ji
iy = byy

where all the coefficients are not exact

This means by setting Ti(t) = 0 and using the temperature data at
a sufficient number of time instants, a set of linear equations can be
generated to obtain the parameter values; this method assumes, of course,
that the témperature derivatives can be determined with arbitrary accuracy
and, hence, can be assumed to be perfect. Note that since multiplication
of each parameter by a constant for fixed i gives the same equation, only
ratios of the parameters to one parameter can be determined for each node.
It should also be noted that if the time slices are too closely spaced,
the parameter coefficient matrix will be almost singular. That is the
set of equations are ill-conditioned; this leads to numerical solution

difficulties.

If the temperature data are not accurate, the parameter values would
necessarily be forced to compensate for the inaccuracies. The effects

of small temperature measurement errors are discussed in Appendix D.

3.1.2 Method of Least Squares (Net Heat Flux Residual)

One formulation of least squares is the use of the net heat flux
residual at every node, i, as indicated in equation (3-1). This method
also requires that the temperatures be measured at every nodal location.

If the temperature at every node were perfect,vthen.the residual at a
-given node is due to the inaccuracies of the parameter values. If
the temperature measurements were not accuraté, then the heat flux residual

represents combined effects of temperature and parameter inaccuracies.

Using equation (3-1), the mean squared residue, R, may be expressed

over a time period, t —to, as follows:

f
n

AR i=1 *
o
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The set of normal equations are obtained by taking the derivative of

k1> Pr1
The normal equations are easily found and are expressed in the following

equation (3-1) with respect“to the parameters, Qk, a Ck’ and Tk.

way .

Derivative with respect to Qk’ yields

t
f T, ()
oR 2 “/ﬁ k
= T, (t) dt = 0 (3-3)
0q  (tg-t) t k2 9Qy
k=1,2,.0... ,
BTk(t)
where: 3 =1
Qk
Thus, equation (3-3) becomes,
oR 2 ‘/ﬂtf
= T, (£) dt = 0 (3-4)
aqk (tf—to) to k

k=1,2,..00.,n

Derivative with respect to a, yields,

¢ aT, (t
gl‘;kz - (tffto) -{ f [T (£ Bai; )
) (3-5)
+ 1,(t) EZﬁff?] dt = 0
L Bakk
=1,2,000.. ,n
2= kt+l,..... ,T
where Ezkff? =T,-T
’ Bakz L Tk
arz(t) o
Bakz k "2

Thus, equation (3-4) becomes



R _ 2
Bakl (tf—to)

/ [T, (8) = T ()][Ty- T, 1 dt =0 (3-6)

(o]

k=1,2,.....,0

L= k+l,...s. s T
Derivative with respect to bkz yields,
- ) ftf 3T, (£) 31, (£)
= 1, (t) = + 1,(t) ] dt =0
abk2 (tf—to) £ k abkz 2 Bbkz
(3-7)
= 1,2, +501
£ = ktl,...0.,T
sTk(t) . .
where, —V~———— = o(T,'-T,")
8bk2 ') k
3T2(t) . .
= g(T, "=-T,")
abkk k "2
Thus equation (3-7) becomes
e
BR 2 f N u
= [t,(t) - 1,(t)] ofT,"~T,"] dt = O
Bbkz (tf—to) to k b3 2 "k
(3-8)
k=1,2,..0..,0n
£ =ktl,..... ,T
Derivative with respect to Ck yields
t
f 9T, (t)
oR 2 f k
= [T, (£) 1 dt =0 (3-9)
ack (tf—to) g k ack
o)
k=1,2,..... ,n
BTk(t) .
where, SE;T—- = —Tk



Thus equation (3-8) becomes

t

£ ;
3R 2 ~/” :
oR -7, (t) T, dt = 0 (3-10)
9C, (t f—to) , k k

k=1,2,.....,0

Equations (3-4), (3-6), (3-8), and (3-10) represent the normal
equations, Solution of these equations will yield the unknown parameter
values if the temperatures are known accurately at every node. Since
this least squares method is in essence smoothing the information from

time, to’ to, t the problems of accurate temperature derivatives and

f’
ill-conditioned equations are considered to be not as severe as for the
deterministic method discussed above. It should be reiterated that this
particular least squares formulation will not accommodate temperature

sparsity which is a major requirement in the present study.

3.1.3 Method of Least Squares (Measured and Model Temperature Difference)(l7’18’19

Another formulation of the least squares method is the use of the
temperature difference between measurement and model. With this formula-
tion, random noise can be superimposed on the temperature measurement and
temperature sparsity can be accommodated provided of course that physical

considerations are satisfied.

Consider a rearranged form of the heat balance equation,

dTi Q. (t) r a,, T bi‘
—L -2 +3 FH(-t)+ozr (-1 (3-11)
dt C. .4 C. joi .1 C. 3 i

i j=1 "i F=1 "1

i=1,2,.....,n

If the heat input to each node is a function of time, we have in addition

n heat input equations of the form,
Q,(t) = fi(Ti,T’t,B) (3-12)
where B represents a heating constant such as the solar constant

For a typical thermal model with n nodes, with (p-n) model parameters
and m measured nodal temperature, where m < n and p is the sum of the

number of nodes and the number of model parameters, it is desired to
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obtain the least squares estimate of the n nodal temperatures and the (p-n)

model parameters at some epoch (time) using the m noise corrupted nodal

temperature measurements,

Let the measurement vector, {y*}t, at time t be an m by 1 vector,

whose elements are the m noise corrupted measured temperatures at time t,

T * * *
* = —
{y }t (Tl’t,Tz’t.....,Tm’t) (3-13)

(Note the superscript T indicates transpose)

Let the state wvector, {x}t at time t be a p by 1 vector, whose elements

are the n nodal temperatures and the (p-n) model parameters at time t.

Q. b,.
Gy = [T Ty evensT a (G reeens G0 (3-14)
] E) ’ i i

The relation between the measurement vector and the state vector at time

t is given by the following observation equation.

{y*}t = [M]t{x}t + {noise} (3-15)

where [M]t is the m by p measurement matrix evaluated at time t,

|
M, = I : 0 (3-16)
|

(m x m)

Assuming that linear relations* can be used to express the updating
of the n nodal temperatures and the n nodal heat input from time t
to a later time t+l, and assuming the remaining (p-2n) model parameters

are constant, we have the following updating equation for the state vector,

{X}t+l = [U]t{x}t’ (3-17)

where [U]t is the updating matrix evaluated at time t.

* The linear relations can usually be obtained by proper linearization
of the heat balance equations and the equations governing the heat
input, e.g., truncated Taylor Series expansion. Other forms of
linearizations lead to different algorithms such as quasilinearization
(paragraph 3.1.4) and that used in Program MAFIA (paragraph 3.1.5).
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Assuming that k sets of noisy temperéture measurements were obtained
for the m nodes from time t=0 to time t=k, and these k sets are {y*}o,
{y*}l,....,{y*}k, we wish to obtain the least squares estimate of {x}k,
whose elements are the n nodal temperatures and the (p-n) model parameters
at time t=k. In other words, we want to obtain xi,k’ the elements of {x}k
as a function of the k sets of temperature measurements such that they

minimize the following criterion function,

k 2
= - {y* -
e, = I 1| M {x}, - (s}, |l (3-18)
t=o0 [W]
t
where [W]t’ an m by m diagonal matrix, is an arbitrary positive weighting

matrix for the measurement vector {y*}t. This implies that we have some
idea of the relative magnitudes of the random measurement noises involved,

otherwise [W]t can be taken to be an identity matrix.

The criterion function Ek can be regarded as a function of {x}k

because equation (3-17) can be used to express {x}t as a function of

{x}k, t < k., Using equation (3-17), we get

{x}, = 0], (0l _,..... (0] {x}, (3-19)

and

ft

{x}

. [01 ) Ix}, (3-20)

where [¢]k ‘ is the transition matrix that projects the state vector at
t

time t to the time t=k, and

k=1
(01, 2 T [, (3-21)
’ i=t
Thus letting
Kl & 1010, (3-22)

Equation (3-18) can be written as a function of {x}k only,
k 2
= - {y*® -
e, =2 |l [K]k,t{X}k {yx} 11 (3-23)
t=0 (Wi,

The estimation problem is now reduced to the minimization of € with respect

k

to {x}k. The set of optimal {x}k that minimize the criterion function €

is called the least squares estimate of {x}k and is denoted {ﬁ}k.
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Differentiating equation (3-22) with respect to {x}k gives

Bsk

k
= T

and {ﬁ}k satisfies the following normal equationms,

k
P T
— {y* v = -
tEO([K]k,t{x}k {y*}) [W]t[K]k,t 0 (3-24)
The root, {ﬁ}k, is found by taking the transpose of equation (3-24). This

gives,

I ™M &

LK) (&}, - (a3 K 17 = 0

t=o0

which reduces to,

™M=

T T A _
(K], (W1 CKD (RY, = (%)) = 0
t=0
Rearranging, we get

k
T Kl ([WIGIK], (R} = I (KD (W Eys),
t=0 t=o

[ Ese R

Solving for {ﬁ}k gives,

k

®}, = [ Z
k .

I ™M=

WE ot 07 T ) i Gs)

o} t=0

Since [W]t is a diagonal matrix, and [W]z = [W]t, equation (3-25) can be

written as
[K]T (Wl [K], _17'1[ ; (x]% [wl {y*}_1 (3-26)
Skt e ke N Bl e -

Equation (3-26) gives the least squares estimate of the n nodal temperatures
and the (p-n) thermal model parameters at time t=k using the noisy

temperature measurements for time t=o0 to time t=k.

If a priori estimates are available, they can be incorporated into

the criterion function as additional measurements. Let the a priori
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estimate to the state vector at time t=k be {xa}k. Incorpbrating this
a priori estimate into the criterion function as defined by equation

(3-23), we get a new criterion function given by,

k
€ra " I {x}, - {x_ [12 11 + 2 || (K], t{x}k - {y*}t||2
t=o ’ [W]t
(3-27)

where the p by p matrix, [A], is a weighting matrix for the a priori

estimates.

Upon differentiating €. a with respect to the state vector {x}k,
3
and solving for the least squares estimate {ﬁ}k from the resultant normal
equations, we get,
k k

T - T
= [[A] +tEO[K]k,t[w]t[K]k,t] Tialx ), +t§o[K]k,t[W]c{y*}t]

{x}k
(3-28)

Equation (3-28) gives the least squares estimate of the n nodal temperatures

and the (p-n) thermal model parameters at time t=k using the noisy temperature

measurement from time t=o to time t=k and the a priori estimates at time

t=k.

3.1.4 Method of.ansilinearization(za’25)

The method of quasilinearization as applied to thermal model parameter

correction may be developed as follows:

Consider the heat balance equation (3-11). This set of n equations

can be represented by the following vector differential equation,

I = £(Tp,0) (3-29)
where T is a vector that consists of the n nodal temperatures and p is a
vector that consists of the k thermal model parameters. By making transient
temperature measurement of all or part of the n isothermal nodes, it is
desired to determine the vector p and a complete set of initial condition
'l(to)’ for the n nodes, such that the solution to equation (3-29) is in
closest agreement with the measured data. Our aim is to determine the
thermal model parameter vector p and the initial temperature vector Eﬂto)
such that the sum of the squares of the deviations between the computed

temperatures and the measured temperatures for the measured nodes is minimized.
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Let the mth approximated solution to equation (3-29) be given by

( (m)

T

m) = g_@(m) (tO)’ B ’ t) (3—30)

By the method of quasilinearization, the mt+l approximated solution can be

obtained by solving the following n linearized differential equations

n afi@(m) ’P_(m)’ £)

L (mHl) (m) (m) (m+1) (m)
T, = £,@™, p, 0 42 = (1, -1, )
@ @ !
k of, (™, p o, t)
T o, ™, @) (3-31)
j=1 Py J J i=1,2,....,n
(m+1)

The improved thermal model parameter vector p
)(m+l)
o

and the improved initial
temperature vector T(t are determined in the least squares sense

by minimizing the following criterion function

|| o+ (e) - z(e) @)
0o w(t)

€ =
t

(3-32)

I o3 er

where T*(t)
I-(t)(m+l)

measured temperature for the measured nodes

= computed temperature for the measured nodes obtained
by solving the system of differential equations as
given by equation (3-31).

W(t)

some weighting function for the measured temperature
if the relative magnitude concerning the measurement
noise is known.

)(m+l)

Since T(t is the solution of a system of linear differential

equation, it may be represented in the form,
n
@) oo, ™4 £ b (o), (x ) @ (3-33)

I(t

where the vector Eﬁt,gfm+l)) is the particular solution of equation (3-31)

" that involves terms consisting of the improved parameter vector Eﬁm+l).

The vector h,(t) is the solution of the homogeneous form of equation (3-31).

These vectors, gﬁt,gﬁm+l)) and hj(t), are determined computationally on

the measurement interval, time to to time t. |
The improved initial nodal temperatures, T(t )(m+1)

B-(m+1) °

s, and the improved

thermal model parameters, , are determined by minimizing the following,
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€=
t=

+ et

(o]

H l*(t) - E(t:R

(@+l), 3 (m+1) 3
AR OLICN |l (3-34)

j= L

In this way, the problem of thermal model parameters correction is reduced

to the solution of systems of linear initial value problems and of linear

algebraic equations.

The following summarizes the computational procedures:

(1)

(2)

(3)
(4)

(5)
(6)

Use some nominal parameter values, p°, and integrate the
heat balance equations to get the initial temperature
approximation, T°(t), by choosing initial conditions

arbitrary;

Use T°(t) and p° to integrate the linearized equationms
to obtain Eﬂl)(t) as a function of the improved parameter
2‘1), and initial temperature vector, Eﬁl)(to);
(L)

vector,

Determine p and Efl)(to) in the least squares sense;

oY)

Use p and Iﬁl)(t) to integrate the linearized equations

to obtain Iﬂz)(t) as a function of the improved parameter
vector, EFZ), and initial temperature vector, I‘z)(to);

(2)

Determine p and Iﬂz)(to) in the least squares sense; and

Repeat the iteration until convergence is obtained, i.e.,

lp®™ @) < e

2™ e )1 P e )] < e

€1 and €, are predetermined convergence criteria.

3.1.5 Program MAFIA

The Program MAFIA is a minimum variance estimator whereby the

state vector is estimated in the least squares sense. The epoch (time)

used is the initial time, and the estimated state vector corresponds to

the value at the initial time. The program is programmed to solve three

mathematical problems:

1)

The integration of differential equations;
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(2) Minimum variance estimation using measured data; and
(3) Solution of nonlinear implicit simultaneous equations.

To correct thermal model parameters using noisy temperature measurements,
the nonlinear heat balance differential equations is first integrated using
nominal parameter values and initial conditions to obtain nominal temperature
profiles. These nominal temperature profiles and the nominal parameter

values are then used to linearize the nonlinear heat balance equation.

Let the nonlinear heat balance equations be represented by the

following nonlinear vector differential equations,
}_:1. = f(z(_,t) (3"35)

where the state vector x is composed of the nodal temperatures and the
unknown thermal model parameters. Taking the variation of equation
(3-35), we get

s = 2 sy (3-36)

£ = 3% 2
Equation (3-36) is a linear equation. The solution to equation (3-35)

can be approximated by
x(t) = x°(t) + 8x(t) (3-37)

where x°(t) is the nominal state vector obtained by solving equation
(3-35) using nominal parameter values and initial conditions. &x(t) is
a correction term and constitutes the solution to equation (3-36);

8x(t) is given by,
6x(t) = ¢(t,t ) 6§ﬂto) (3-38)

where ¢(t,to) is the state transition matrix that projects 0x from time
to to time t. The state transition matrix is given by,

t-1

¢(t,e ) = I U, (3-39)
o . i
i=t
o

and Ui is the state updating matrix that projects 60X from time t-1 to
time t. The state transition matrix and the updating matrix obey the

following matrix differential equations,
d _of
dt ¢(t’t0) = az ¢(tato) (3 40)
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¢(t:o,t;o) =1 (3-41)

rry Ut = -é_x_: Ut (3-42)

Now a matrix equation of the form,

4 = i (3-44)
with initial conditions
w(e D1 = Wl (3-45)

(where [A] is a matrix of constant coefficients), has the solution

W = (w) elA(tte) (3-46)
The matrix e[A](t—to) may be expressed in an infinite series
elalle=to) _ g 4 5 jiAj (t-to)? (3-47)
j=1

If the partial matrix %i—is sufficiently constant over the interval

ti—l to ti so that the matrix [A] may be approximated by the expression:

Nl of of
A= —2— { (-é;(—)t + (-B;)t } (3-48)

i-1 i
and that the matrix A(ti—ti_l) has elements sufficiently small compared
to unity that the series expansion will converge using only the first

four terms. Thus the updating matrix may be expressed as,

of of
) + &) J
9x c 9% -1

2

(3-49)
where Ut—l = I (from equation (3-43))

The state transition matrix may be expressed as
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¢(t’to) = Ut—l ¢(t-1’t0) (3-50)
since,
t-1
¢(t,t )= 1 U,
o {=t i
o]
t-2
= Ut—l il Ui (3-51)
t
o
and
t-2
ItT U, = ¢(e-1,t )
o)

With the determination of the state transition matrix and upon substituting

equation (3-38) into equation (3-37), we obtain,

x(t) = x°(t) + ¢(t,to)6_>g(to) (3-52)

and 6§ﬂto) can be determined in the least squares sense by minimizing the
square of the difference between the estimated temperature and the measured
temperature is given by the following criteria function,
k 2
e= 3 || yr(t) - x| (3-53)
t.=o w(t,)
i 1
where zﬁ(ti) is the measurement vector whose elements are the noise

corrupted measured temperatures at time t, and w(ti) is the measurement

weighting matrix,
Upon substituting equation (3-52) into above, we get

£ =

t.
i

N~ w

gt - xteep - ¢(ti’to)'§§(t§)!l;(t ) (3-54)
i

Differentiating € as given‘by above equation (3-54) with respect to
&g(to) and solving for the least squares estimate, Gﬁ(to), from the
resultant normal equations, we obtain a formulation which is similar
to equation (3-26) presented in a previous paragraph (3.1.3) on a

general least squares method.
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k

62(t) = [ I ot;,t)W(E) ¢t ,c )17 (3-55)
t.=0
i
k T :
[ 2 ¢(e,,t) W(ti){y*(ti)—zf(ti)}]
t.=o
1

Equation (3-55) yields the correction to the unknown thermal model parameters

and the initial nodal temperatures.

When correction to the thermal model parameters and the initial
nodal temperatures are obtained, these improved thermal model parameters
and initial conditions are than used to integrate the heat balance equations
to obtain new nominal temperature profiles and the whole correction problem
is rerun. This continues (usually several iterations) until convergence

is obtained, i.e.,
S&(t )
.__.—..2 <A
x(t -
()
A is some predetermined convergence criterion.

3.1.6 Maximum Likelihood Estimation(l:6,17)

The maximum likelihood method operates on a parameter or variable
which appears in the probability distribution function in such
a way that the value of the parameter or variable maximizes the likelihood
function., A likelihood function is the probability function when regarded

as a function of the parameter,

For example, suppose yk is a set of data from which a set of parameters
0 are to be constructed. Suppose also the joint probability of yk, given
6,p(yk/6), is available where 0 appears as the parameter, When 6 are
regarded as the variables, the p(yk/e) is a likelihood function. The

maximum likelihood estimate of 8, 6%, is given by the relation,

p(y</6%) = max p(y*/0) (3-56)
2

Consider a static system.

Yi = HiX + ni (3-57)
where ni's is the m-dimensional Gaussian random noise vector,
T
E(ni) = 0, E(ni ny ) = Riﬁij
§,. is the Kronecker delta

ij
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where Ri is an m X m noise covariance matrix.

The probability function for ng is given by,

= 1 1 T -
P(n-) = m/le ll/z exP- ("' 2 n. Rl n-) (3"“58)
i

1 (2“_) 1 1

where ]Ri| is the determinant and the joint probability function of
Ngse+eeNy 1s given by

k k
y (-1/2)m(tl) g lRil-l/z exp. (- %-z . Rgln )

PN yeeeeeTy ) = (27
° k i=o i=0

(3-59)
We can write explicitly the probability function of the Gaussian random
variable n given by equation (3-58), as soon as we know its mean value
and the covariance matrix, because these two quantities are sufficient
statistics and serve as the parameters which specify the probability

function uniquely.

By changing the variable from n's to Y's in equation (3-59), we get

k
) (-1/2)m(k+1) ¢ lRi|-1/2 exp. (- 1

p(yo,yl,....yk/x) = (21
i=o i

1

[ R

2
LA
(3-60)

In the above equation, the variables to be estimated, x, appears as the
parameters vector of the joint probability function. This is exactly
the likelihood function for the observations yo,....yk.f The maximum
likelihood estimate of x,xk*, is the x which maximize equation (3-60)

or which minimize the term

k
| |Hx-y, | |2 (3-61)
=1 © R

By identifying the weighting function is a least squares estimator with
Rzl, we see that the least squares estimator is the same as a maximum

likelihood estimator.
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3.1.7 Regression Analysis(l’z’B)

Regression analysis is a means of making an interpretation of the
outcome of an experiment. This is done by a mathematical formulation
that usually consists of expressing the expected value of one variable
(designated as the dependent variable) as a function of the observed
values of other variables (designated as the independent variables)
and unknown parameters called regression parameters. The regression
parameters are determined by using the observed values of the independent

variables and dependent variable in a least squares sense.
For a linear regression model, the dependent and independent variables
are related by a linear relationship of the following form.

y = Bo + Bl x, + 82 x, + 83 Xy + .....Bn X (3-62)

where y 1is the dependent variable
x, are the independent variables, i = 1,.....n

Bi are the regression parameters, i = 0,.....n

If m sets of data are obtained for y and the xi's, and m > n, then the
regression parameters can be obtained in the least squares sense, by

solving the following sets of normal equationms,

n

m
% _3__ T ( 5 2 -
= vy, - LB, x, )?=0 (3-63)
B;  OBi kel K geo T bk

where xo,k = 1

Consider the heat balance equation (3-11) for the ith node of a

n node model,
n cb, .

o

Q; n=n

T, =t P )+ @t
i j=1°% 3 j=1 i

If the time histories of‘Ti, T, and Ti are known, one can regard

, k|
equation (3-11) as a linear regression model by itself independent
of the remaining heat balance equations; one would regard Ti as the

e Ti") as the independent variables,

dependent variable, (Ti—Ti) and (Tj
Q a,, ob,
and the‘Ei > Ell-, and 5—51 as the regression parameters. These
i i i
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regression parameters can be determined in the least squares sense by

solving a set of normal equations similar to equation (3-63) in form.

Once the parameters in the ith heat balance equation is determined,
they can be substituted into the jth heat balance equation where some
of these parameters appears, and the remaining unknown parameters in
the jth equations can then be determined. By taking the heat balance
equation one at a time, it is possible to determine all the unknown

parameters in the thermal model sequentially,

Note that the term sequential as used here is taken in the equation-
wise sense whereas the one-pass and sequential correlation methods

are distinguished in the timewise sense.

The inherent advantage of the regression method is that only a single
heat balance equation need be considered at a time; this reduces
considerably the size of the core storage requirement relative to methods
that require simultaneous solutions of the heat balance equations. The
major problems with the regression method are that temperature sparsity
cannot be handled and round-off errors could propagate as the heat
balance equation is being processed sequentially with the result that
large errors could be introduced into the equations that are processed

near and at the end.
3.2 SEQUENTIAL METHODS

The sequential methods involve the estimation of parameters and
states sequentially, whereby the measurement data are processed sequentially
and new estimates of the parameters are obtained after each set of measurements
is processed. Several of these methods are presented below:

3.2,1 Kalman FilteringﬁMethod(26’27’28’29)

Again as assumed for the one-pass method, the functional model is
considered to represent the physical system accurately and it is desired
to correct the model parameters using the measured temperatures. Since
the measured temperatures generally include random observation noises,
it is desirable formulate a technique whereby the random noises are

filtered. Consider the heat balance equation (3-11)

dr, Q.(t)' n a,. n b,
ke cl +3 R (T,-T) +0 L E"l (T,"- Ti")
i j=1 "1 3 j=1 "1 3
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with the heat input function as each node expressed as in equation (3-12)

Ql(t) = fi(Ti’Tj s &, B)

An applicable method currently being used in the field of Optimal Control
is the method of Kalman filtering. In this study, the method of Kalman
filtering is applied to correct the various thermal model parameters

using noisy temperature measurements.

For a thermal model that contains n nodes with m nodal temperatures
measured, where m < n, the random noise corrupted measurement vector,
{y*}, is an m by 1 vector whose elements are given by the m noise corrupted

measured temperatures. This is given by

T
*}" = * T % T % ¥ .... T * -
{y*} (T T% To% ooeol T, T *) (3-64)
where Ti* = random noise corrupted measured temperature for the ith

node, i = 1,2,.....,m

In the present problem, the sum of the number of model parameters
and the number of isothermal nodes is p. The state vector is a p by 1

vector whose elements are the n nodal temperatures and the (p-n) model

Q. a..
parameters. The (p-n) model parameters are the (Elﬁ's, (EEJO'S, and

b,. i i
the (E&l)'s.

The state vector is given by the following,
1 T Qi ai. bi.
{x}" = (T, 1, ....Tn,E; ""E;l ""'6719 (3-65)
i

The relation between the measurement vector and the state vector is

given by the following observation equation,

{y*} = MI{x} + {w} (3-66)

where [M] is the m by p measurement matrix given by

m = 1

|

i

I 0 (3-67)
(m X m) \
i

and {W} is the m by 1 random measurement noise vector whose elements

are the random noises associated with the m measured temperatures. This

is given by Wt = Gy Wy ) (3-68)
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It is assumed that {W} has a zero mean, that is E{W} = 0, and the

covariance matrix of {W} is given by,

Wl = B [{wHw}'] (3-69)

Let {xa} be an unbiased a priori estimate of {x}, where unbiased
means E [{x} - {xa}] = 0, and let the p by p error covariance matrix

of {xa} be given as,

A= E[dx} - (x Hdx} - x 17 (3-70)

Furthermore, it is assumed that the random measurement error and

the a priori estimation error are uncorrelated, that is

E [{w} {x—xa}T] =0 (3-71)

It is now desired to obtain a new and "better" estimate of {x} using
the measurement {y*} and the a priori estimate {xa}. Let the new estimate
of {x} be {&}, and let {&} be a linear combination of {y*} and {xa} such

that the following relation is satisfied
(&) = [Bl{y*} + [Cl{x} (3-72)

The matrix [B] and [C] are called the measurement weighting matrix and

the a priori weighting matrix respectively.

The Determination of the Measurement Weighting Matrix and the A Priori
Weighting Matrix

For {&} to be an unbiased estimate, E{&} must be equal to E{x}.

Thus from equation (3-72), we get

E{&} = E([B]{y*} + [C]{xa}) (3-73)

Substituting equation (3-66) into above, we get

E{%}

EC(BI(M}{x} + [B}{W} + [c]{x})

which becomes,

E{%} = [B][MIE{x} + [B]E{wW} + [C}E{xa} (3-74)

since

B{x} = E{x_} and E{W} = 0
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Equation (3-74) reduces to

E{®} = ([B]1[M] + [C])E{x}

Thus in order for {&} to be an unbiased estimate, such that

we must have

E{&} = E{x}

[BI[M] + [C] = [1] (3-75)

where [I] is an p byp identity matrix.

Similar to the error covariance matrix for {xa}, we define the error

covariance matrix of the estimate {&}

7 = E[{x-8Hx-£}T] (3-76)

Using equation (3-72), (3-66), and (3-75), we obtain,

J =

With equation
J =

In order

E[{x-By* - Cx_}{x-By* - Cxa}T]
E[i—BM_:S—BK—C}_a}{ﬁ—BME—B}g—Cxa}T]

E[{(I - BM)x - B - (I - BM)x }{(I - BM)x - BW - (I - BM)xa}T]
EL{(T - BM) @ - x) - BWH (T - BM) (x=x_) - BW}']

(3-69) and (3-70), above equation reduces to

([11-[B]M]) [A1([T]-[BIMDT + ([BI[W1[B]T) (3-77)

to obtain a minimum variance estimate of {x}, the matrix

[B] must be chosen such that the quadratic form associated with J is

minimized. The quadratic form of J is given by,

s = {z}T[31{z} (3-78)

where {2} is any arbitrary p by one vector.

Taking the variation of S, gives

ss = {z}T §[31{z} (3-79)

From equation (3-77), we get

§[J] = [-OBMA(I-BM)T - (I-EM) AM' 6B® + SBWB

T 4+ BusB]

Upon collecting terms and substituting above into equation (3-79),

we get

68 = {z}T [-(z-m)aM® + BW] 8B {z} + [{2}T [-(1-BM)AM® + BW] 6B {z}1T
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Since both terms in the right hand side are scalers, each of which is
the transpose of the other, and because the transpose of a scaler is also

a scaler, we obtain,
§s = 2{z}T [~(1-BM)aM" + BW] 6B {z}
S will be minimized for all {z} if
(1-BM)AM" = BW (3-80)
Solving for B gives

AMY - BMAM® - BW = o

and

B - AM (MaM +w) 7t (3-81)
Combining equations (3-72) and (3-75), we get
(&} = {x} + [B1(y*}-{y D) (3-82)

The above equation together with equation (3-81), gives the minimum

variance estimate {&} of {x}.

Upon substitution of equation (3-8l1) into equation (3-77), the
expression for the optimal error covariance matrix is obtained to

give,
J = (I-BM)A (3-83)

The Kalman Filter Equations

The equations developed in the previous two sections form the
basis for the Kalman filter equations., The remaining task is to show
how {xa} and [A] for a new time t+At can be obtained from {&} and [J]
for the time t., In other words, one wishes to use estimated at time
t to form the a priori estimate for time t+At. The time, t is taken
to mean the time at which a measurement or measurements are made, and
time, t+At is taken to mean the time at which the hext measurement or

measurements are made.

Let the state vector at time t+At be expressible by some linear

function* involving the value of the state vector at time t.

*The linear relations can usually be obtained by proper linearization
of the heat balance equations and the equations governing the heat input,
e.g., truncated Taylor series expansion,
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= [u] {x} (3-84)

where [U]t is the updating matrix that projects the state vector at

time t to a new time t+At.

Using Equation (3-84), the new a priori estimate for the state vector

is obtained to give,

{xa}t+At = [U]t{ﬁ}t (3-85)
and the associated a priori error covariance matrix is given by
T
(Al ppe = BLARY e = b ined b e - T pipd) !
A N T T
= E[[u] {x} - {&})dx} - {&})7(UL]
Using equation (3-76), we get
T
[A]t+At = [U]t[J]t[U]t (3-86)

Equations (3-85) and (3-86) give the relationship whereby the new
a priori estimate of the state vector and its associated error covariance
matrix can be obtained. This completes the derivation of the Kalman

filter equation.

Summary

The following summarizes the Kalman filter equations whereby the

correction of thermal model parameters can be obtained sequentially.

{yx}, = Ml (=} + (W}, (3-87)
{x} 5, = (U] 0x}, (3-88)
&y = (=} + Bl (y*}, - 1y }D) (3-89)
Iy b = =}, (3-90)
(81, = (Al a1, "covl (a1, 001 " 4+ (w17 (3-91)
[91, = (11 - [B] 1M1 [A], (3-92)
{xa}t+At = [U]t{ﬁ}t (3-93)
(Al = V1,007, (0], ° (3-94)
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where {y*}t

{x}t

{w}t

B3 e

random noises corrupted measurement vector obtained at

time, t.
= value of the state vector (unknown parameters) at time, t.

= random noises associated with the measured data obtained

at time, t,.
= value of the state vector (unknown parameters) at time, t+At.
= measurement matrix evaluated at time, t.

= new estimate of the state vector (unknown parameters)

after processing the measured data obtained at time, t.

= a priori estimate of the state vector (unknown parameters)

before processing the measured data obtained at time, t.

= measurement weighting matrix evaluated at time, t (the

time varying gain).

= E[({x} - {xa})({x} - {xa})T], error covariance matrix

for the a priori estimate state vector.

= E[({x} - {&}) {x} - {ﬁ})T], error covariance matrix for

the newly estimated state vector.

= transition matrix

The following steps given the correction scheme whereby the Kalman

filter equations are used,

¢

(2)

(3)

(4)

&)

First obtain an a priori estimate for the state vector
{xa}t and the associated error covariance matrix [A]t.

Calculate the time varying gain [B]
and the first set of measured data.

N using equation (3-91)

Obtain new estimate for the state vector, {X} using equation
(3-89) and the first set of measured data.

Calculate the error covariance matrix, [J]t for the newly
estimated {ﬁ}t using equation (3-92).

Update the newly estimated state vector, {&}¢ with equation
(3-93) to obtain the new a priori estimate at time, t+At,
and calculate its associated error covariance matrix

using equation (3-94).

3-24



(6) Repeat Step (2) to (5) using the new a priori estimate
for the state vector and its associated error covariance
matrix with the 2nd set of measured data. .

(7) Repeat above until all the measured data have been processed
or until desirable results* are obtained.

Formulation When the Model Parameters are Temperature Dependent

For large temperature variation, the thermal properties of many
spacecraft materials may vary greatly, and the model parameters become
highly temperature dependent. For these temperature dependent parameters,
a scheme whereby corrections can be obtained using the equations obtained

in the previous sections is formulated as follow.

Consider a typical conductive conductive joining the nodes i and j.

This conductance is in general given by the equation,

k..A, .
where kij = thermal conductivity of the material
1j = area along the conduction path joining nodes i and j.
(Ax)ij = length along the conduction path joining nodes i and j.

The temperature dependence of the thermal conductivity can usually

be expressed as

k = k°£(T) (3-96)
where k°® = same reference thermal conductivity value
f(T) = a known function in terms of the material temperature**

Substituting equation (3-96) into equation (3-95), we get

kS.A. .

S S M & _
a; s (Ax)ij f(Ti,Tj) (3-97)

From the above equation, it can be observed that the conductive

conductance, aij’ is a product of two terms, one being temperature
kI.A.,

dependent and one being a constant, Let the constant ?%i?él be a;J
ij

Equation (3-97) becomes,

*Desirable results are results whose variance are smaller than some
specified values.

**For a thermal model, the material temperature is usually expressed
as some weighted average of the temperatures at nodes i and j.
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aij'= aij f(Ti’Tj) (3-98)

Similarly, it is possible to express the radiative conductive in the

above form, giving

b, = bl g(T, 3-99
14 1] g( j) ( )

where g(Ti’Tj) is some known function relating the radiation properties

of nodes i and j to its temperatures.

Using equations (3-98) and (3-99) for the aij's and the bij‘s, the heat
balance equation for node i can be written as,
dar; Q; =n n b°,
—= =243 (—J-> E(T;,T,) (T,-T)) + 3 (——-1) 8 (T, T)(T'*T“) (3-100)
dt c. . h|

i J=l 1 j=1
The above heat balance equation takes the same form as equation (3-11)
withe the exception that (T ~T, ) has been replaced by f(T T )(T -T, )
and (T = “) has been replaced by g(T T )(T bor, “) S1nce the same
temperature measurements are used, the equatlons for parameters correction

developed in the previous sections also apply.

Convergence Criterion

The Kalman filter is an unbiased minimum variance linear estimator.
By examining the diagonal terms of the error covariance matrix, which
give the variances of the model parameters and nodal temperatures, it
is possible to determine the convergent trend as the noisy temperature
measurements are being processed. Convergent trend results in decreasing
variances as additional noisy temperature measurements are processed,
Convergent criterion for the model parameters can be defined by setting

somé lower limits.

Measurement Noise

In the application of the Kalman filtering method to the correction
of thermal model parameters, some knowledge regarding the statistics of
the measurement noise must be available. For truly random measurement
errors, Gaussian noise can probably be assumed. When thermocouple
biases are associated with the measurements, and these biases are
known, they must be removed such that the only noises associated with

the measurements are the random noises. If the thermocouple biases are
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unknown, these biases can be considered as additional unknown parameters
to be determined and included as part of the state vector.

3.2.2 Recursive Least Squares(lé—lg)

In paragraph 3.1.3 was presented the one-pass least squares method.
Suppose additional temperature measurements are available at a later
time, t=k+l, and to obtain the least squares estimate of the n nodal
temperatures and the (p-n) thermal model parameters, it is necessary
to resolve the entire problem from time t=0 to time t=k+l if the standard
least squares method is used; it is desirable to develop a recursive
scheme whereby the optimal least squares estimate can be obtained
sequentially whenever additional temperature measurements are available.
In the development to follow, continued reference will be made to the

presentation of paragraph 3.1.3.

The criterion function to be minimized with temperature measurements
from time t=0 to t=k+l is given by the following expression which is

similar to equation (3-18),

k+1 )
= - {y* -
€4y = & 110M) {x} - {y*} || (3-101)
t=o [wl
t
The optimal least squares estimate of {X}k+l’ {ﬁ}k+l’ is given by (which
is similar to equation (3-26)).
kil e .
5 - * -
Bhn Doy TV TR tEO[K]k+l,t[w]t{y Yo (3-102)

With the definition of [K] and [¢] as given by equations (3-22) and (3-21)

respectively, we can write,

[Klppg ¢ = D000, o (3-103)

[01p4q, e = 01 10T ¢ (3-104)

(K, e = M1 D010 0D = (K], [U1
(3-105)

Substituting equation (3-105) into equation (3-102), we get
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BT el o
B =[ LS P LS I A3 P ES PR 4 A L B 1S t[W]t{y*}t]

t=0 t=0

(3-106)
Equation (3-106) can be expanded to give,

o

k T T

-1
.. - T T -
B = tEO[U]kl ISP L S P Ul S LM [K]k,k+l[w]k+l[K]k,k+l[U]kl]

kT T
z {U]k1 (K] W] {y*} + [U]k1 (Kl 1 (W Iv%h | G-107)
Lt=1 3 ’

We wish to obtain {ﬁ}k+l as a linear combination of {ﬁ}k and some correction

term {Ax}k+1 in the following form,

{:";}k+l = [U]k{x}k + {Ax}k+l (3-108)

To determine the expression for the correction term, we substitute

equation (3-108) into equation (3-107) to give

-1T k T -1 —1T T -1
(01 tEO[KJk,t[w]t[K]k,t[U]k + UL KD g T IR [0
A -1T k T —1T T .
U1 8h + ()= W 5 IKIG 04T+ D00 (KT (W T4
(3-109)

Expanding above and solving for {Ax}k+l after the application of
equation (3-26), we get

T

-1
k T
- T - - T -
by = [[U]kl t__Z_O[K]k,t[W]t[K]k,t[vU]kl + [K]k,k+l[w]k+l[K]k,k+l[U]k1]
LS P LRSS e I ™ (3-110)
Let
[P1.' = I IRl [W] K] | (3-111)
t=o0 ’ ’
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and

Tk T
[Pliyq = [[U]k1 I K]y AL PRES P L3 M U My “’]k e ¥ ]kﬂ[K]k’kﬂ[U];‘]

t=o0

(3-112)
then . 1
(Plie = [[Ul g2 el 3 P 1 I £ T P 1k’k+1[u]k1]

(3-113)
Upon the application of Ho's lemma*,(ls) we get

T
T -1 T - T
(Pl = (01 0PI VD - (U1 [PY [UTCTODLY KDY L (IR]y o (012 (0], 2], [0])

T

(03,7 [KIy e * M) ™

(Kl ey (01 U1, [RII0D (3-114)

With equation (3-17), we obtained,

- -1

{x}, = [01 *{x} ., (3-115)
With the definition of the transition matrix as given by equation (3-21),
we get

- -1

(o1 perr = U]y
and with equation (3-27), we get

(KT prn = My 10 (3-116)

Upon substituting equation (3-116) into equation (3-114), we get

[Pl = (U1, [P (U], - [0 [P] (U1 M], o (DM, (O, [R] [UDSMMD

-1

+ W1, ) 7H W] U [P], (U] (3-117)

With equations (3-108), (3-110), and (3-113), we get

{8}, = U1 (R}, + [P, M DW] o (y*dy ) = M), T0] (x))  (3-118)

*Ho's matrix inversion lemma: If [P]I1 = [P]7! + [H] [W]l[H] where [P]
and [W] are nonsingular, symmetric, and posit1ve, then

[P), = [P] - [PJ[HI] ([HI,[P1[H] + [W]) "[H],[P]
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Equations (3-111), (3-117), and (3-118) give the least squares estimates
of the n nodal temperatures and the (p-n) thermal model parameters at
time, t=k+l, as a function of the least squares estimate at time t=k and
some correction term, and these equations formed the recursive least
squares estimator,

3.2.3 Bayesian Estimation(6’17,20)

In many estimation problems, it is possible to specify some 'criterion
function" resulting from incorrect estimation of the system parameters.
If the a priori probability function is available not only for the
measurement errors but also for the values of the unknown parameter
vector, x, then it is possible to obtain an optimal estimate, x, which
optimizes this criterion function. Such an estimate is called an optimal

Bayesian estimate.

In general, the form of an optimal Bayesian estimate depends upon
the form of both the criterion function and the a priori probability
distributions of parameters and measurement noise. For the class of
estimation problems with quadratic criterion function, an optimal Bayesian
estimate is given by choosing x to be the mean of x conditioned on the
observation, yk, i.e., ¥ = E(x/yk). This is true regardless of the
probability distributions of the parameters or measurement noise. For
the class of problem with criterion function, E = lx—ﬁl, then the optimal
Bayesian estimate is given by choosing & to be the medium of p(x/yk).

If the criterion function is to maximize the probability p(x/yk), then
the optimal Bayesian estimate is given by choosing & to be the mode of
p(x/yk). However, if the a posteriori probability distribution of x

given the measurements yk, p(x/yk) is uniform and symmetric, then all

three optimal estimates are the same.

Computation of the a posteriori probability distribution, p(x/y)

Consider the problem of estimating x given y and y is given by,

y = gx,n) (3-119)
where X is the unknown vector and N is the random noise vector.

We wish to compute the a posteriori ﬁrobability distribution p(x/y).
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If equation (119) is invertible for n

n=f'x,y) (3-120)

where f~' is the inverse of g, then

p(x,y) = px,n)|J] (3-121)
where J is the Jacobian
= .
J = det, (By) (3-122)
and _
- RG,y) -
p&x/y) () (3-123)

Another method whereby the a posteriori probability distribution can be

obtained is through the use of Baye's rule

plx/y) = Eiflﬁ%géz) (3-124)

Example:

As an example, consider the linear system given by
y = Hx + 7 (3-125)

Assume that x and n are dependent such that the joint probability

distribution is given by,

p(x,n) = px)p(n) (3-126)

and p(x) is Gaussian with

E(x) X, E(xxT)

and p(n) is also Gaussian with

i
+d

(3-127)

0, E(MD)

l
i

E(M) R (3-128)

From equations (3-125, (3-127), and (3-128), we see that y is also a

Gaussian random vector with

E(y) = HZ, E(yy') = HPOHT +R (3-129)
and A -1 :
p(y) = [(2n)mlzlﬂponi + R| ] exp. (- %{y—HE)T(R+HPoHT)—1(y—Hﬁ)
Since the Jacobian, det. (%gj =1
then

p(x,y) = p(x,n) = p&)p(n) = pX)p(y-Hx)
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and

- p&®)p(y-Hx)
p (/) p(y)
p(x/y) = C exp. {—-% [(x-z)Tpgl (x-%) + (y—Hx)TR_l(y—Hx)

_(y_ni)T(R+uponT)'1(y-Hi)]} (3-130)

where . |up ur 4 Rll/z
c )

- (2w)“/2 lPoll/lell/z

(3-131)
Since p(x/y) is symmetrical and uniform, all three best estimates, i.e.,
the conditional mean, median, and mode of p(x/y) are the same and given

by x which is given by

% + PHR ! (y-HX) (3-132)

>
[]

T T,=1
p=P - PH ®HPH) 'HP_ (3-133)
Equation (3-131) and (3-132) are essentially the Wiener-Kalman filter

for a single stage estimation.
3.3 SUMMARY

A number of potentially suitable correlation methods selected from
a list of techniques reported in technical literature and categorized
as either one-pass or sequential were presented in mathematical detail
above, Although each of these methods may potentially be suitable as
a technique to fullfil the objectives of the present study, a limited
number of methods had to be chosen for further studies because comparison
could be obtained only by coding the selected methods and applied to
a mathematical model. Since temperature sparsity is a major requirement,
it was clear that techniques that could (atlleast potentially) accommodate
sparse measurement must be selected. As a result the Kalman filter
which is a sequential method and Program MAFIA and quasilinearization
which are one-pass methods were selected as the major techniques to be
studied in detail. These methods because of mathematical sophistication

are subject to programming difficulties. In order to obtain baseline
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information such as core storage requirements and round-off error and

to provide comparison results two other techniques, regression analysis
and the method of least squares with heat flux residual were selected

for additional study. Both of these methods will not accommodate sparse
temperature measurement but mathematical sophistication is much less than
the aforementioned methods. Evaluation of these techniques are discussed

in Section 4.
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4.0 EVALUATION OF SELECTED CORRELATION METHODS

Five methods as indicated in the previous section were selected for
more detailed study. Two of the methods, regression analysis and least
squares (net heat flux residual) were studied to obtain baseline informa-
tion such as round-off errors, programming complexities, and results for
comparison with the other selected methods. Both of these methods will
not handle sparsity of temperature measurements, which is a major require-
ment of this study. The Kalman filter, Program MAFIA, and quasilineari-
zation are the other three methods to be studied. The first is a sequential
method and the latter two are one-pass methods; these three methods will
accommodate sparsity. Initially, it was the intent to study both Program

MAFIA was found to be a satisfactory correlation technique.

Evaluation of these methods were pursued by the use of the five~-
and twenty-node models which are described in Appendix A. The evaluation

of these methods are present below.
4.1 METHOD OF LEAST SQUARES (NET HEAT FLUX RESIDUAL)

This method as discussed in paragraph 3.1.2 is a least squares method
of the net heat residual at each nodal location and over a specified time
period. This method will not handle temperature measurement sparsity
but was selected as indicated above to provide baseline information such
as the problems associated with ill-conditioned equations. Round-off
errors and the accuracy of temperatures and temperature derivatives are

extremely important considerations.

It should be noted that in this study of the five- and twenty-node
models that computer solutions will be used in lieu of experimental data;
these computer solutions are as near—perfect temperature data as one can
expect. As a result, error effects such as temperature derivative inac-

curacies as well as methods comparison should be discernible.

4.1.1 Steady State Conditions

Both the five- and twenty-node models were examined by the use of the
steady state least squares equation, which for steady state conditions are
deterministic. Under steady state conditions, the number of soft para-

meters cannot exceed the number of nodes.- Various combinations of soft
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parameters were studied; the results are shown in Tables 4~1 through 4-5.
These tables also include transient results for comparison purposes as

well as for convenience.
4.1.1.1 Five-Node Model

Table 4-1 shows the results when three parameters, 2195 b34, and
b56 were considered to be soft and identifiable. This set of parameters
is identified as one soft parameter per node. Three sets of soft
parameter were examined. These results indicate that the variational
method will yield the correct soft parameter values for the case of

one soft parameter per node.

The steady state least squares method was studied further by
examining the case of two parameters per node with a maximum of five
soft parameters, a23, a45, b12’ b15, and b34. Again three sets of
soft parameters were used as indicated in Table 4~2. These
results show that the least squares method lead to inaccurate soft
parameter values. A detailed matrix inversion examination revealed
that this combination of soft parameters and values yielded and ill-

conditioned set of equations. Part of the problem stems from the

23

fact that the values of conduction parameters (conductance), aiJ

are an order of magnitude larger than the radiation parameters,
2
bij(Ti+Tj)(Ti

are ill-conditioned.

+Tj2), but it is not clear why this set of conditions

In spite of the problems with the case of two parameters per node,
it was decided to examine the case of more than two parameters per
node. Five parameters, 8195 3145 375> b13’ and b16’ from a single
node were then examined. These results are shown in Table 4-3.
Remarkably, very accurate parameter values were obtained. Since
the conductors as soft parameters were expectéd to present the most
problems, it was not surprising to find that when the heat inputs,

Ql’ Q2, and Q3, were considered to be the soft parameters, the

calculated heat inputs were extremely accurate as shown in Table 4-4.

In all of the cases discussed above, the soft parameters were
identifiable. Suppose that a soft parameter is not included among

those selected as a soft parameters or suppose that a hard parameter
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is among those selected as soft parameters, this neglection may
have a large impact on the accuracy of the corrected parameter
values. For the latter case, as one would expect, the inclusion
of a hard parameter among those selected as soft parameters have
little effect on the accuracy of the corrected parameter values

as shown in Table 4-5. On the other hand, if a soft parameter

is not included among those which are considered soft, the impact
of the accuracy of the corrected parameter values depends upon the
temperature influence of the neglected soft parameter, larger is

the influence, larger is the inaccuracy.

The steady state least squares approach using the first node
model has revealed severe problems that are directly related to
the accuracy of the experimental data. Even with near perfect
"measurements" (digital computer output), ill-conditioned situations
arose. Another problem of interest is that parallel conductors,
a and ka can not be estimated simultaneously for the steady
state case; the reasons for this are apparent from the heat balance

equations.
4,1.1.2 Twenty-Node Model

The twenty-node model was studied to evaluate the effect of the
model size on the accuracy of the variational approach. Model size
is an important consideration since numerical round-off errors increase
with an increase in the computation. This is a particularly important
problem in the present study because of the large model size objective
of the present study coupled with the sophisticated computational
schemes used in the correlation methods. The results for the twenty-

node model are presented in Table 4-6.

Table 4-6 shows four sets of parameter extimation obtained from-
the steady state least squares method and one set of parameter estimation
from the transient least squares method which will be discussed in a
subsequent paragraph. Comparison of the parameter values from the
steady state method shows a considerable difference. This difference is
due to the manner in which the coefficient matrix was inverted. The
coefficient matrix is formulated directly from the normal equations

of the steady state least squares method.
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TABLE 4-6

TWENTY-NODE MODEL, TWENTY LINEAR CONDUCTORS
LEAST SQUARES METHOD, STEADY STATE & TRANSIENT

Steady State

Transient
Double Double
Parameter Nominal Single Precision Precision | Precision
% *% wkk %

ay, .5 .499999 -499999 .499998 .499998 .499321
aj, A .380354 .505408 -1.06820 -6.37732 .500546
aje 1.15576 .904227  4.50151 38.1957 .500597
a1’17 .500003 .500003 . 500004 . .500003 . 499564
a2,3 . 500000 . 500000 .500000 . 500000 .500171
a[*’5 .473159 446716 -1.28753 1.04286 .500186
a5,6 .271532 .471268 -13.1753 -12.6327 498747
a6,7 .543303 .386402  3.05642 2.98912 .500887
a7’8 .0472268 .633657 -34.5789 -25.5261 .503956
a8,9 .525904 .490942  2.61008 1.98901 .501065
ag’10 . 652435 .219148 14.7630 9.26232 .474551
alO,ll .614255 .600406  8.07551 7.06766 .503780
311,12 .374261 .525606 =~8.55224 -6.72789 .500886
a12,13 .421169 .626267 -4.95627 -4.03149 .499970
313,14 .627346 .579139 10.0784 7.82042 .499504
a14,15 .297302 .510128 -11.1345 -11.1520 | .500655
alS,l6 .383930 .481393 -11.4320 -6.17218 .496552
al7,20 . 500006 .500006 .500008 .500007 | .502554
a18’19 V .499997 .499997 499997 .499997 §.500282
alQ,ZO .5 . 499996 .499996 .499995 .499996 §.499731

* Subroutine S@LVIT
*% Subroutine INVRSE

E

Subroutine GJR
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The three methods of matrix inversion were examined in an attempt
to improve the accuracy of the corrected parameters; the methods are identi-
fied as subroutines, S@LVIT*, INVRSE, and GJR. Subroutine SPLVIT employs
Jordan reduction on the augmented matrix (single and double precision). Sub-
routine INVERSE is a CINDA~3G subroutine which employs Jordan Reduction
with row interchange in single precision. Subroutine GJR is a UNIVAC MATH-
PACK subroutine using Gauss—-Jordan Reduction with row and column inter~

changed in single precision.

All three methods in single precision yielded approximately the same
results when the parameter values were close to the true value. However,
wide variances were found for the remaining parameters. A disturbing
result was that SPLVIT in double precision yielded values that were con-
siderably less accurate than SPLVIT in single precision. The details of

these matrix inversions are discussed in Appendix D.

4.1.2 Transient Conditions

When the number of soft parameters is greater than the number of
nodes or if steady state temperatures are not available, transient
conditions must be employed. One of the problems which transient data
is the need for accurate temperature derivatives. In the presentation
to follow, the importance of accurate temperature derivatives and the
application of the least squares by use of transient information on the

five- and twenty-node models are discussed.
4.1.2.1 Temperature Derivatives

For transient problems, the temperature derivatives become an
important consideration for the accuracy of the soft parameter
evaluation. Without experimental data, it was again necessary to
employ calculated temperatures via computer solutions. Experimental
temperature data can be expected to be less accurate. TInitially,
temperature derivatives were calculated by employing the finite
difference technique which consists of taking temperature difference
between two adjacent time points divided by the time increment. Both

_T_

the forward difference, T .
i "i-1

.,+~T., and the historical difference, T
i+l i

* A subroutine generated by L. C. Fink, programmer TRW Systems Group
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were used. The soft parameter corrections were, in general, grossly

in error with the use of these temperature derivatives. Befter&results
were obtained by using the average of forward difference and the
historical difference. Since the accuracy of the soft parameter
evaluation is quite sensitive to the temperature derivative, a further
study was made by using a least squares third order polynomial fit of
the temperature data. As a matter of interest CINDA-3G has a least
squares polynomial (fit of order 10) subroutine called LSTSQU(35).

These temperature derivatives generated from the polynomial fit, in general,
yielded the best results although under certain circumStances, the use of
the less accurate derivatives yielded as well if not better soft parameter
values as shown in Table 4-7. The case of seven soft parameters ﬁere
studied; note that for these sets of soft parameters the average tempera-
ture derivative yield the best result. These results do indicate that

the temperature derivative strongly affect the soft parameter values.

In view of the importance of the temperature derivatives, the variational
approach was studied by using the polynomial fit. No attempt was made

to determine the impact on the storage requirements; however, it was

noted (Table 4-7) that the computational time for the polynomial fit

is appreciably longer than for the other derivative methods.

Table 4-1 shows (paragraph 4.1.1) that for the case of one parameter
per node, the use of transient temperature yield parameter values which
are not as accurate as for the deterministic case but of sufficient
accuracy from a thermal prediction standpoint. This result is not surprising

since the temperature derivatives present additional computational inaccuracies.

The two parameters per node case which presented considerable
evaluation difficulties using the steady state least squares approach
was better handled by the transient least squares formulation as shown in
- Table 4-2. Attempts to improve the soft parameter evaluation by scaling
technique and roundoff check led, surprisingly, to less accurate values
as shown in Table 4-8. 1t is not clear at this time, the cause of the
inaccuracies. Logically, the round off error check and scaling should
have yielded improved soft parameter values. For the five parameter
per node case, the transient least squares method yielded reasonable
parameter values but not as accurate as the steady state least squares

method as shown in Table 4-3.
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TABLE 4-7

EFFECT OF TEMPERATURE DERIVATIVE

Time~-Step

Polynomial Fit

Parameters Exact Single Average ‘
______ ~MY§}?§WW . ZError | Value  ZError| Value 7Error
Q 100 99.322 -.68 100.013 | +.0131100.015| +.015
C, .2 . 20045 +.23 .200414 | +.21 |.19848 | -.76
Cy .2 .19491 -2.55 .19955 | =-.23 [.205006| +2.5
C5 .2 .19339 -3.3 .19952 -.24 |[.19734 | -1.33
g .5 .54687 +9.37 .50597 | +1.19 |.48322 f3.38
a5 .5 .63672 +27.34 .51995 |.+3.99 |.291702{-41.82
b14 .2 .12505 -37.5 .20293 | +1.47 [.20332 | +1.66
Run Time = 42 sec = 42 sed = 42 sec
TABLE 4-8
FIVE-NODE MODEL, TRANSTENT, TWQ SOFT PARAMETERS/NODE
PARAMETER VALUES ‘ ‘
Soft * *E % T K 17
Parameters Exact Calculated Exact Calculated_mﬁggagy »Qg%gglggeﬂ_
a3 .5 .4990 .386 .25 .2517 .1271 1.0 .9910| .762
3, .5 .5000 |-.336 .75 .7555 | -.400| 1.0 .9926]|-.663
b12 .2 .1600 .220 . 2637 .276 .3304) .521
b15 .2 .2011 .191 .2963 .211 .4106} .337
b34 .2 .2009 .577 .0965 .561 41141 .118

* No Scaling or Round-Off Check
*% With Scaling and Round-0Off Check
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With steady state temperature data, the numbef of parameters
that may be corrected cannot exceed the number of measured tempera-
tures; whereas with transient data, this limitation does not exist.
Two cases with more than five parameters were examined. Some of the
parameter values are in error by a significant amount; others are
reasonably accurate. The results are shown in Tables 4-9 and 4-10;
note that as the exact value of the soft parameters increases, the
estimation becomes more accurate. The reason for this is not clear
at this time. Since only transient data can be used to determine the
capacitance values, the capability of the transinet least squares
method to do this was examined; the results as shown in Table 4-11

are excellent.

Although the parameter values as estimated by the transient least
squares method may be inaccurate, the imporfant consideration is the
resultant temperature~time history. Using the inaccurate parameter
values of the case represented by Table 4-9 (eight soft parameters),
the transient temperature history of the five-node model was determined.
These results are presented in Table 4-12. Comparison of these temperatures
with the temperature history with the exact parameter values as shown in

Table A-3, indicate that the temperatures are remarkably close.
4,2 REGRESSION ANALYSIS

The applicability of regression analysis (Refer to paragraph 3.1.7)
was investigated by applying it to the five-node thermal model. Again
calculated transient temperature histories and the rates of temperature
change were used as temperature measurements to correct the perturbed

thermal model parameters.

By slicing the transient temperature histories into m slices,

we obtained m sets of data; these are

Tl,k’ TZ,k"""’ TS,k; T

L T2 e Ts

k=1,2,.....,m
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TABLE 4-9

FIVE-NODE MODEL, TRANSIENT, SEVEN SOFT PARAMETERS

Pa§Z£;ters Exact |Calculated | Exact ‘Calculated Exact |Calculated
Q1 100 99.9941 100 .99918 100 .99994
C2 .2 .19528 .3 .29409 .39132
C3’ .2 .20895 .3 .30766 .40785:
05 .2 .19833 .3 .30129 . 40469
a5 .5 . 44569 .75 .69142 1.0 .92269
a3 .5 .13325 .75 .56507 1.0 .88021
b14 .2 .203071 .3 .30215 N .40168

TABLE 4-10
FIVE-NODE MODEL, TRANSTENT, EIGHT SOFT PARAMETERS

Soft

Parameters | Exact | Calculated | Exact | Calculated| Exact |Calculated
a1y .5 .57698 .75 .89954 1.0 .83593
ayq .5 .581717 .25 .32383 1.0 1.2346
g .5 .32981 .75 .54542 1.0 .73412
b12 .2 .53592 .3 .06029 4 .62304
b23 .2 .086176 .3 .19411 4 .56159
b24 .2 .15796 .3 .10796 A .39346
b25 .2 .43611 .3 .58921 .4 .79325
b26 .2 .20133 .3 .29772 .4 .39776

TABLE 4~11
FIVE-NODE MODEL, TRANSIENT, CAPACITANCES AS SOFT PARAMETERS

Soft

Parameters| Exact| Calculated | Exact | Calculated] Exact | Calculated
c, .2 .19985 .3 .29985 .4 .39995
¢, .2 .20017 .3 .30010 .4 .40078
C3 .2 .19980 .3 .29986 o4 .39995
C4 .2 .19986 .3 .29996 <4 . 40005
C5 .2 .20065 .3 .30080 W4 .40073
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TABLE 4-12

FIVE-NODE MODEL, TEMPERATURE RESPONSE WITH INEXACT PARAMETER VALUES*

Time Nodes

(Hr) 1 2 3 4 .5
0 64.9000 114,600 36.4000 62.1000 102.600
1.0 64.3541 107.669 35.9134 61.6967 89.0159
2.0 63.2498 101.068 34.8341 60.7985 77.7783
3.0 61.7427 94.8059 33.3181 59.5130 68.3247
4.0 59.9482 88.8751 31.4825 57.9239 60.2488
5.0 57.9521 83.2606 29.4161 56.0972 53.2513
6.0 55.8187 77.9433 27.1865 54.0860 47.1082
7.0 53.5963 72.9030 24,8449 51.9329 41.6493
8.0 51.3210 68.1195 22.4310 49.6727 36.7440
9.0 49.0198 63.5734 19.9747 47.3334 32.2912
10.0 46.7131 59.2466 17.4990 44.9384 28.2118
11.0 44.4159 55,1222 15.0216 42.5064 24,4435
12.0 42.1394 51.1846 12.5557 40.0530 20.9368
13.0 39.8917 47.4199 10.1112 37.5908 17.6522
14.0 37.6786 43,8151 7.69583 35.1302 14.5579
15.0 35.5041 40.3586 5.31495 32.6796 11.6284
16.0 33.3711 37.0398 2.97257 30.2460 8.84264
17.0 31.2813 33.8491 6.71505 27.8348 6.18356
18.0 29.2356 30.7778 - -1.58638 25.4505 3.63697
19.0 27.2345 27.8181 -3.7999%4 23.0967 1.19119
20.0 25.2779 24,9627 ~-5.96857 20.7760 -1.16358
21.0 23.3654 22,2052 ~-8.09211 18.4907 ~3.43558
22.0 21.4965 19.5394 -10.1708 16.2423 -5.63177
23.0 19.6704 16.9602 ~-12.2049 14.0320 -7.75808
24,0 17.8862 14.4624 -14.1950 11.8606 -9.81965
25.0 16.1428 12.0415 -16.1420 9.72867 -11.8209
26.0 14.4393 9.69347 -18.0466 7.63643 ~13.7656
27.0 12.7747 7.41433 -19.9097 5.5839 -15.6571
28.0 11.1477 5.20060 -21.7324 3.57099 -17.4985
29.0 9.55744 3.04908 -23.5155 1.59741 -19.2924
30.0 8.00275 .95607 -25.2601 ~-.337212 -21.0412

* Inexact parameter values taken from Table 4-10
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The five heat balance equations governing this five node model at any

time k, when the data are obtained, are given by the fellowing set

of equations.

. 5 5
4 4
+A = + + I - + -
(Ci Ci) Ti,k (Qi AQi) i1 (aij+Aaij)(Tj,k Ti,k) jzl(bij+Abij)(T i,k T k,k)
j#i j#1
(4-1)
i=1,2,3,4,5
Where the Ci’ Qi’ aij’ and bij are nominal parameter values and the
A's are the necessary corrections to these values such that a best
fit to the m sets of data can be realized. TIf the parameters are hard
(the nominal values correspond to the true values), the A's associated
with these parameters are set to zero. To obtain a best fit to the m
sets of data, we wish to determine the A's in the least squares sense
by minimizing the following criterion functions.
m 5
€; = § {(ci+Aci) Tig ” (Q;+4Q;) —'E (aij+Aaij)(Tj’k—Ti’k) -
k=1 i=1
i#
5
4 4 2
jil(bij+Abij)(T 5,61 i,k) } (4-2)
j#i
i=1,2,3,4,5
Upon differentiating €y with respect to the A's and setting each of
the resultant equation to zero, we get the following sets of
normal equations,
m . .
= 0 4-3
o Tk (4-3)
rI-J,.=0 (4-4)
-1 ik o
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J, ., =03 3=1,2,...,5 (4-5)

4 4
21 (T j,k—T _,k) Ji’k =03 3=1,2,...,5 (4-6)
where
. 5
Ji,k = {(ci+Aci) Ti,k - (Qi+AQi} —jEl (aij+Aaij)(Tj,k—Ti,k) -
ifa
3 L 4
2y Cagte) g™ 0? (4-7)
J#i

i=1,2,.0..,5

By solving for the A's in the first set of normal equations corresponded
to i = 1, the corrections to the various soft parameters associated

with node 1 are obtained. These corrections are then substituted

into the second set of normal equations corresponding to i = 2,

wherever they occurred; this reduces the number of unknown A's and
consequently the number of equations in the second set of normal
equations. The remaining A's in the second set of normal equations

are then found. Upon having determined the corrections to the various
soft thermal model parameters associated with node 2, they are substituted
into the third set of normal equations corresponding to node 3 together
with the corrections determined for node 1, wherever they occur; this
reduces the number of unknown A's and consequently the number of equations
in the third set of normal equations by a greater amount. The remaining
A's in the third set of normal equations are‘then found. This sequential
scheme continues until all the A's are solved for (until all five sets

of normal equations are considered).

The above equations were programmed and a number of test cases
examined. These results were found to be quite unsatisfactory. It

appeared that the probable cause of the inaccurate estimate was due
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to inaccurate temperature derivative. Because of adequate baseline
information obtained from the least squares method, no further attempt

was made to continue the regression analysis method.
4.3 KALMAN FILTERING METHOD

The Kalman filtering method was discussed in considerable detail
in paragraph 3.2.1. The sequential aspects of this method were
examined by using the five- and twenty-node models and a number of
test cases. Since these test cases employed numerically calculated
temperature histories, which are near perfect, it was necessary to

construct an artificial filtering problem.

The formulation of this artificial filtering problem is as
follows. The governing heat balance equations are first arranged

in the following form,

{y*}=[M1{x} + {w} (4-8)

This is done by first placing those terms that involve the known
(hard) model parameters on the left hand side; these left hand terms
are combined to form an artificial measurement vector {y*}. The
remaining terms that involve the unknown (soft) model parameters

are placed on the right hand side to form [M]{x}, where {x} is

the state vector formed by the unknown model parameters, and [M]

is the artificial measurement matrix that involve the coefficients
of the unknown parameters. Since all the unknown parameters are

considered to be constant, the following relation holds,
= {x} (4-9)

This gives an identity matrix for our updating matrix [U]. With
the vectors {x}, {y*}, and the matrices [M] and [U] formulated, the
Kalman filter equations can be used to correct the thermal model
parameters sequentially as soon as the problem is initialized by
assuming a priori knowledge of the unknown parameters, i.e., the

assumptions of {Xa} and [A] (refer to paragraph 3.2.1).

In perturbing the test models, the five-node model was first
considered with the measurement noise vector {W} set to zero; this
means that the Kalman filtering scheme is being used to solve a

deterministic problem. The first case tried was the correction of
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five soft parameters, two linear and three radiation; this case is
the same as the one presented in Table 4-~2 with the exception that
9 Bru/hr-£e-°r’.

The results as presented in Table 4-13 were quite unsatisfactory; a

the Stefan-Boltzmann constant, O, was "rounded" to 2.0x10

convergence trend was indicated after two sets of data were processed
but divergence from the true values occurred when additional data

were processed.

A detailed examination of the computer printouts revealed that
the state error covariance matrix, which should be a symmetric and
positive semidefinite matrix, became asymmetric after having processed
the first set of data; the asymmetry 'became more and more pronounced
when additional data were processed. The asymmetry of the state error
covariance matrix caused the parameters to diverge from the true values.
The cause of this asymmetry appeared to be numerical round-off errors
even though specific sources could not be isolated. As a result a
new subroutine called SYMFRC was generated to force symmetry of the
off-diagonal elements by averaging the values of the elements. SYMFRC
was employed to force the symmetry in the state covariance matrix. With
this forced symmetircal matrix, the case with the two linear and
three radiation parameters was reexamined. The results as shown in

Table 4~14 were excellent.

The Kalman filter was examined further by studing the following
cases: (1) four linear and four radiation conductors with no parallel
sets; (2) one capacitor, three linear, and four radiation conductors
with no parallel set; (3) four linear and four radiation conductors with
one parallel set; (4) four linear and four radiation conductors with
all sets parallel; and (5) three linear and five radiation conductors

with three parallel sets. The results are tabulated in Table 4-15 to 4~19.

It can be observed that in all cases with the exception of case (5),
(Table 4-19), excellent correlation between the calculated parameter
values and their true values were obtained. The parameter values
converged closer and closer to their true values as additional temperature
data were processed with the exception of case (4), (Table 4-18). Case (4)
(Table 4-18) shows an undesirable oscillation in one parallel pair of

parameters. Case (5) shows that all the perturbed parameters converged
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to values within fractions of one percent of their true values after having

processed two sets of temperature data, and then diverged to undesirable

results.

Detailed examination of the Kalman filter equations indicated that
numerical errors probably caused the divergence and oscillations. The
nature of the Kalman filter equations is such that by setting the
measurement noise vector to zero, it is necessary to invert a matrix
given by [M][A][M]T (refer to Equation (3-81)). When the unknown parameter
values approaches their true values, the elements in the state error
covariance matrix becomes very small. The inversion of matrices whose
elements are very small poses numerical problem. This problem was
eliminated by employing an artificial measurement noise vector whose
elements are small, stationary and uncorrelated; case (5) was then rerun.
The results are tabulated in Table 4-~20. It can be observed that excellent
correlations between the calculated values and théir.true values were
obtained; convergence to the true parameter values were obtained as more

and more temperature data were processed.

For the twenty-node model, a case with twenty linear conductors
perturbed. Excellent results were obtained as tabulated in Table 4-21.
A further study was made by perturbing all the parameters with the
exception of the heat input, Q's. The number of soft parameters totaled
eighty-four (84) as shown in Table A-5. The results were excellent
as shown in Table 4-22. As a note of interest, this case required
approximately 20,000 core locations and a run time of approximately

4 minutes (nine passes).

Another particular note of importance is that no attempt was made
to include temperature sparsity because of programming complexities
and because of problems confronted with this temperature sparsity
consideration using Program MAFIA. These problems are applicable
to both correlation techniques; discussion of these problems are

found in the next section and Appendix C.

Unperturbed mathematical models were analyzed in order to produce
simulated test data. In the early stages the temperatures at two
successive time points divided by the time step were used for the

temperature derivatives. However, this provided the T dot value over
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TABLE 4-22

TWENTY-NODE MODEL, KALMAN FILTER
36 Linear & 28 Radiative Conductors, 20 Capacitances
(Artificial Noise, Forced Symmetry of State Error Covariance Matrix)

Unknown Estimate Unknown Estimate Unknown Estimate
Para- | True | After 9th Para- | True | After 9th Para- |True |After 9th
meters | Value| Set of Data| meters | Value| Set of Data| meters |Value|Set of Data

c, .05 | .0498935 as .5 | .502054 oby 5y | *  |5.04613x10717
c, A .0499921 2, 20 A 489397 ob, 91 * 4.99538x
C3 .0500326 age .500873 0b3,21 5.01477x
C4 .0496892 agg .591775 0b4,21 5.00575x%
c5 .0501638 25 20 .500681 Gb9’21 4,.97538x%
C6 .0500891 ag5 .500894 0b10’21 5.00803x
C7 .0477995 asg .4568612 0b11,21 4.98179x
C8 .0507621 23 10 .501038 0b12,21 4.83844%
C9 . 0497347 agg . 496495 0b17’21 4.99464%
C10 .0500998 g 19 .511881 Ob20’21 5.04621x
Cll .0498834 39.10 .499504 0b7,21 4.87098x%
C12 .0480263 a3 17 .496274 0b15,21 4.89399%
013 .0493641 ag 19 .499056 Gb18,21 5.24572x
1014 .0498457 310,11 .500379 0b19’21 4.77062x%
C15 .0491943 211,12 .496140 0b8,21‘ 5.04009x%
C16 .0504122 311,14 .498470 0b16,21 5.15093x%
C17 .0499071 219,13 .496418 0b7’15 3.90605x
C18 ! .0506099 312,18 470691 Gb8,16 5.53624x%
C19 . 0497443 :1113,14 .498318 Ob7,l6 4.17923x
Cyo .05 | .0493960 313,16 .495731 0b8,15 4.06697x
aj, ) .500243 a13,18 .496732 0b7,18 5.02361x
a, A 497493 314,15 . 498458 95 19 5.34679x
a6 .497666 a15,16 .523403‘ Gb8,l8 ] 5.54961x
ajy . 498447 316,17 .500182 0b8,19 5.20843x
a3 .500335 a17,18 .496115 0b15,18 5.95466%
3y 15 . 500291 a17’20 .499229 0b15’19 # 5.10081x
aq, Y .497182 218,19 # .515076 Ob1e 19 4.03536x 10
age .5 .500888 319,20 .5 .465891 Ub16,8 * 4.83587x10

10

* For Convenience, Gbij were all set equal to 5.0x10
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a time space when it was required at a time point. Consequently,
several parameter correction methods diverged due to this inaccuracy.
A subroutine was then coded which utilized the pseudo-compute sequence
to calculate the net heat flow into each node at a time point; these
values divided by the nodal capacitance provides an accurate time
point T dot. While this method is suitable for simulated test data,
actual test data will require smoothing and fitting techniques in

order to obtain fairly accurate T dot values.

4.4 PROGRAM MAFIA

The correlation method denoted in Program MAFIA was discussed
in paragraph 3.1.5. This method was applied to the five-node thermal
mdoel with calculated temperature histories as the temperature
measurements. These artificial temperature measurements were then

used to estimate the unknown (soft) thermal model parameters.

A total of three cases were considered. The first case consisted
of estimating ten parameters (five parallel sets) assuming all five
nodes measured. The second case consisted of estimating the same
ten parameters with an additional one representing the initial temperature
of node 4 and assuming only four nodes measured; these measured
nodes are 1, 2, 3, and 5. The third case consisted of estimating
the same ten parameters with two additional parameters representing
the initial temperatures of nodes 2 and 4 and assuming only three

nodes measured; these measured nodes ar 1, 3, and 5.

For the first two cases, two perturbations each were considered.
These perturbations represented one with a priori knowledge and the
other without a priori knowledge of the unknowns. The results for
these two cases are tabulated in Tables 4-23 & 4-24. From Table 4-23 it
can be observed that relative good correlations between the estimated
values and their true values were realized. A comparison of the
estimates between those obtained with a priori information concerning
the unknowns and those obtained without a priori information showed
that better results were obtained without a priori information.

This was due to the faqt'that in the method of least squares, the

a priori informations are used as additional measurements. When

4-27



TABLE 4-23

FIVE-NODE MODEL, PROGRAM MAFIA
Five Nodes Measured

Without
With a Priori Informations a Pr10¥1
Informations
o(Weights for
Unknown a Priori the a Priori Calculated| Calculated True
Parameters Estimates Estimates) Values Values Values
aj, 0.8 0.25 0.449 0.455 0.5
as 1.0 0.549 0.541
354 0.3 0.479 0.487
as, 0.1 0.537 0.499
s 0.4 0.25 0.388 0.508 0.5
b12 0.3 0.1 0.245 0.241 0.2
b15 0.4 07135 0.144
b23 0.1 0.229 0.218
b34 0.5 0.152 0.202
b35 0.7 0.1 0.348 0.185 0.2
TABLE 4-24
FIVE-NODE MODEL, PROGRAM MAFIA
Four Nodes Measured
Without
With a Priori Informations a Priori
£ .
o(Weights for BLOrpations.
Unknown a Priori the a Priori Calculated | Calculated True
Parameters Estimates Estimates) Values Values Values
T4(to) 571.8 50 521.3 521.3 521.8
ajy 0.8 0.5 0.467 0.471 0.5
ays 1.0 0.563 0.549
3,54 0.3 ’0.512 0.514
ag, 0.1 0.394 0.388
a5 0.4 0.5 0.420 0.445 0.5
bl2 0.3 0.5 0.237 0.235 A0.2
b15 0.4 0.123 0.141
b23 0.1 0.186 0.183
b34 0.5 0.339 0.348
b,s 0.7 0.5 0.286 0.254 0.2
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a priori informations are used, proper weights to these a priori
informations must also be used. When improper weights are used, the

a priori informations becomes a bad set of data, and with this additional
bad set of data will give inferior results than estimation without

using this bad set of data. This comparison points out the fact that
when the method of least squares is to be used, it is often

preferable to use it without a priofi informatioﬁs; If a pfiori
informations are to be used, a relatively accurate knowledge of the
errors of the a priori estimates must be available, i.e., the

knowledge of the error convariance matrix concerning the a priori

estimates.

The results of the third case with the same five~node thermal
model as used in the first and second case was found to be quite
unsatisfactory. These results are tabulated in Table 4-25. Although
the results shows that the values obtained for the unknown conduction
conductances were in serious error and the initial temperatures
estimated for the unmeasured nodes; nodes 2 and 4 were inaccurate
by approximately +18 and ~18°F, respectively. The reason for
these results became evident after a close scrutiny of the thermal
model. The heat balance equations governing nodes 2 and 4 were
found to be identical. This meant that node 2 and node 4 could not
be distinguished, (observed) and the simultaneous estimation of the
unknown parameters and initial temperatures at nodes 2 and 4 could

not be accomplished.

The problem of observability was studied further by using a
slightly modified five-node thermal model constructed by eliminating
the couplings between nodes 1 and 4 and nodes 2 and 5 from the original
five-node model. The decoupling appeared to satisfy observability
between nodes 2 and 4. The theoretically calculated temperature
histories for nodes 1, 3 and 5 for this model were then used as
measurement data to estimate the ten unknown parameters and the
initial temperatures for nodes 2 and 4. The results are tabulated
in Table 4-26. It can be observed that correlation between the

estimated values and their true values was not satisfactory.
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TABLE 4-25

-~ FIVE~NODE MODEL, PROGRAM MAFIA
Three Nodes Measured
(Nodes 2 and 4 Indistinguishable)

FIVE-NODE MODEL, PROGRAM MAFIA

Three Nodes Measu

red

(Nodes 2 and 4 Assumed to be Distinguishable)

o(Weight for

Unknown a Priori | the a Priori Calculated True
Parameters Estimates Estimates) Values Values
T2 (to) 567. 50. 585.4 567.3
T4 (to) 522. 50. 503.2 521.8
aj, 0.8 0.5 0.441 0.5
a5 1.0 0.578

a4 0.3 0.488

a3y 0.1 0.526

a5 0.4 0.5 0.390 0.5
b12 0.3 0.5 - 0.255 0.2
b15 0.4 0.090

b23 0.1 0.220

b34 0.5 0.161

b45 0.7 0.5 0.363 0.2

TABLE 4-26

Unknown Calculated True
Parameters Values Values
T2 (to) 559.6 567.9
T4 (to) 521.5 521.7
a;, -0.247 0.5

a;s 0.678
a5, 0.382
as, 0.507
a5 0.715 0.5
b12 1.14 0.2
blS -0.131
b23 0.403
b34 -0.171
b45 0.138 0.2
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At the present time, the only plausible explanation is that the
observability was not satisfied. A discussion of observability

of the thermal networks is presented in Appendix C.
4.5 SUMMARY

The results of the studied correlation methods have revealed a
number of interesting problem areas such as temperature sparsity
and numerical round-off errors and at the same time have yielded en-
couraging parameter estimation possibilities. The method of least
squares with the net heat flux residual provided considerable insight
on the accuracy needs of the correlation methods which do not account
for noisy measurements. The Kalman filter revealed that the correction
of a large number of parameters is indeed feasible under relatively
ideal conditions; it remains to be seen how less-than-ideal conditions
affects the parameter estimation qualities of the Kalman filter.
Program MAFIA revealed some of the problems of temperature sparsity
and directed some preliminary effort in the area of observability

of thermal networks.
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5.0 PROBLEM AREAS AND SYSTEM PROGRAMMING CONSIDERATIONS

Parameter estimation of a large thermal network presents many
technical difficulties, some of which are directly applicable to the
correlation methods and the remainder concerned with related and highly
important areas. Systems programming represents a critically important
consideration that must be resolved before a practical correlation
method becomes a reality. The presently recognized and expected problem

areas and a few of the planned system programming aspects are discussed.

5.1 PROBLEM AREAS

5.1.1 Sparsity of Temperature Measurements

The accommodation of sparse temperature measurements remains a
highly critical and presently unsolved problem. 1Its solution represents
a necessary condition before a meaningful and practical correlation
method is possible. This problem has been briefly explored in the
present study and is reported in Appendix C., The results are rather
incomplete and fragmentary but are presented at this time only to
indicate the nature and significance of the general problem of
observability of nonlinear systems and its relevance to thermal

network correction.

5.1.2 Temperature Dependent Coefficients

From theoretical considerations, temperature dependent coefficients
are not expected to Present undue difficulties. For example, if the
coefficients can be expressed as a product of two terms, one being
temperature dependent and the other constant with only the constant
part being correctible, the correlation methods are directly applicable.
Temperature dependent coefficients were discussed in Paragraph 3.2.1,
Kalman Filter. If the temperature dependent coefficients cannot be
adequately represented in this manner, an alternative is to assume
a constant coefficient over a specified time period; this yields
a stepwise representation of the coefficients. Possible problem
areas include difficulties that may be encountered because of the
increased non—-linearity of the heat balance equations and program

difficulties because of the need for increased core locations.
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5.1.3 Identification of Soft Parameters

In the study conducted so far, all the soft parameters were either
specified or mixed with hard parameters; these hard parameters were
then treated as soft. For small thermal network the inclusion of
the hard parameters as soft may be practical and thus considered
realistic, but limited core storage locations will, in general, prevent
a scheme of this type. As a result some means of identifying the soft
parameters should be provided in addition to the manual means employed
by the engineer directly. Use of sensitivity coefficients appears to
be an attractive was for providing this information. However, a complete
study will be required before its feasibility and practicality can

be established.

5.1.4 Measured Temperature Data

The experimental data is to be provided by NASA/MSC if available.
However, it is of particular importance to indicate that the accuracy
of this information is essential for any network correction scheme.
The study conducted heretofore employed calculated temperature and
temperature derivative values which in essence were near-perfect.

It remains to be seen what effects inaccurate temperatures will have
on the accuracy of the parameter estimation. It is also clear that
experimental temperature data must also be processed to eliminate
obvious erroneous measurements and to smooth, perhaps in a least
squares sense, the remaining data. It is assumed that NASA/MSC will
provide the necessary processing and editing of the expérimental

interface data.
5.2 SYSTEMS PROGRAMMING CONSIDERATIONS

Meaningful correlation methods can become a reality only if a
number of system programming considerations can be resolved. Some

of these are discussed below.

5.2.1 Local Region Isolation

Local region isolation is a particular important systems problem
that must be fully implemented before a large network correction
technique can actually become a reality. It is hoped that by comparing
the temperatures measured and theoretical, a programming scheme

can be developed to do this.
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5.2.2 Identification and Bounding of Soft Parameters

Theoretical aspects of soft parameter identification were discussed
in a paragraph above. From a programming standpoint, a single
subroutine to service any parameter correction scheme (within
reasonable constraints) is being considered; this would thus allow
standardization of identification and bounding of information.

Input data would consist of any array of triplet values for each
soft parameter. The first would identify the parameter while the
other two would be the absolute lower and upper bounds. The
subroutine would reorder the parameters into a desired sequence and
print a dictionary identifying the soft parameter and its relative

parameter number.

5.2.3 Input of Test Data

The subroutine to perform this function would be customized to
the particular parameter correction subroutine which it services and
also to the input format of the test data. It would require sufficient
information so that it could correlate the test data with the analytical
node points. A smoothing operations should be available if needed
in order to insure smooth continuous functions and also to calculate

temperature derivatives.

5.2.4 Parameter Correction Subroutine

No matter what method is used this subroutine will be required
to initialize itself by obtaining matrix storage areas from
dynamic core storage. The size requirements are immediately deter-
minable from paragraph 5.2.2 and 5.2.3 above. 1In all probability,
the parameter correction subroutine will internally call upon the
identity and test data subroutines. It will then call upon lower
level subroutines to form the matrices required by its particular
method and call upon the SINDA matrix manipulation subroutines

to perform any additional operations required.

5.2.5 Rerun and Verification

Since the test data is normally at a different frequency than
the analytical conmputation step and usually several time slices are

necessary before parameter correction is possible, automatic recalculation
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of the network with the corrected parameters cannot be controlled by
the subroutine discussed in paragraph 5.2.4 above. This function must
be performed by an additional subroutine placed in the execution block
which would correct the soft parameters, set time and temperatures
back some previous value and logically route the sequence of operations

to again call upon the network solution subroutine.

5.3 SUMMARY
These problem areas were presented here to indicate that a number
of problems directly related to a correlation method and a number of

systems programming considerations must be resolved before a practical

correlation method for a large thermal network becomes a reality.
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6.0 RECOMENDATIONS

It was the original intent of this Phase I study to make a
specific recommendation of a correction method that indicated at
least potentially the capability to correct parameters of a large
thermal network, given temperature measurements. On the other hand,

if the results were negative, then the conclusions must so indicate.

The results in many respects are quite promising and in other
respects as indicated by the discussion on problem areas, less so.
The chief concern at the présent time is the accommodation of the
sparsity of temperature measurements. Sufficient information has
not been generated nor results obtained to make a realistic assessment
on the magnitude of sparsity that can be handled. It is clear however
that if a high percentage of temperature measurements are available
or that the measurements are properly located, either the one-pass
method or the sequential method can satisfactorily correct the parameters
of a thermal network. The size of the thermal network remains an
unanswered question. Other considerations such as core storage
requirements, programming sophistication, numerical errors, etc. will
govern which of the two methods should ultimately be employed. As
a result, the following recommendation is made based upon the results

of the present study and anticipated results.

It is recommended that both the one-pass method and the sequential
method be studied further in Phase II until a more definite conclusion
can be made. Simultaneously, other system aspects of the correlation
methods will be developed in such a way that both methods can be
handled directly.
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APPENDIX A TFIVE- AND TWENTY-NODE THEORETICAL MODELS

The parameter estimation (correlation techniques) methods were
studied in detail by the use of the 5~ and 20-node models illustrated
in Figures A-1 and A-2. These particular models were chosen because

the mechanism of heat conduction and thermal radiation are well-represented.

The five-node model provides a preliminary test of the several
correlation methods that have passed the initial and secondary
screening. The twenty-node model provides a more severe test of
the techniques studied with the five~node model and provides some
insight on the problems of model size; for example numerical errors

may be of particular importance.
A.1 FIVE-NODE MODEL

The five-node model as pictured in Figure A-1 can be described
as a hollow cube with one face open to space. This model allows
a good mixture of conduction and radiation exchange and provides a
reasonable test of the correlation methods since the radiation
exchange is an order of magnitude smaller than the heat conduction
flow from one surface to another. The thermal properties and
environmental conditions are tabulated in Table A-2 and the transient
response of each nodal temperature starting from the steady state

temperature is tabulated in Table A-3.
A.2 TWENTY-NODE MODEL

The twenty-node model as pictured in Figure A-2 is a larger
version (more nodes) of the hollow-cube of Figure A-1. This model
provides the same characteristics of the smaller five-node model
with the additional complexities associated with a larger system
that magnifies the computer storage, numerical errors, and programming
subtleties. The thermal properties and environmental conditions
are tabulated in Table A-4; the nominal parameter values are tabulated
in Table A-5 and the transient response of a few selected nodal
temperature starting from the steady state temperature is tabluated

in Table A-6.
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TABLE A-1
FIVE-NODE MODEL, THERMAL-GEOMETRICAL PROPERTIES AND
EXTERNAL INPUT

Surface

Characteristics

All

Emissivity (Dimensionless
External

Internal

Heat Input (BTU/hr)
Steady State
Transient

Initial Temp. for Trans.

(°F) (From Steady State
Values)

Density (y,1b/ft?)

Heat Capacity, C
(BTU/1b °R)

Thermal Conductivity, k,
(BTU/hr °F/ft)

Dimensions (ft)

Shape Factors Between
Surfaces (Fij)

100
100

64.

9

150

114.6

36.4

62.1

300

102.

6 -

174
.23

100

1'x1"x.005'

0.2

Sink Temperature (°F)

-460
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TABLE

A-3

FIVE-NODE MODEL, TRANSIENT RESPONSE*

Time

(hr) 1 2 3 4 5

0 64.9000 114.600 36.4000 62.1000 102.6000

0.01 64.5399 107.332 36.0388 61.8077 88.9352

0.02 63.5530 100.527 35.0404 60.9943 77.6165

0.03 62.1140 94.1494 33.5730 59.7715 68.0930

0.04 60,3527 88.1628 31.7631 58.2266 59.9625

0.05 58.3656 82.5323 29.7060 56.4291 52.9261

0.06 56.2249 77.2253 27.4744 54.4349 46.7583

0.07 53.9843 72.2120 25.1234 52.2891 41.2869

0.08 51.6841 67.4659 22,6951 50.0286 36.3793

0.09 49,3543 62.9629 20.2213 47.6834 31.9323

0.10 47.0173 58.6818 17.7266 45.2782 27.8648

0.11 44,6896 54.6038 15.2293 42.8330 24,1130

0.12 42,3831 50.7118 12.7434 40.3642 20.6263

0.13 40.1067 46.9909 10.2794 37.8853 17.3640

0.14 37.8665 43,4277 7.84513 35.4074 14.2936

0.15 35.6669 40.0101 5.44614 32.9392 11.3887

0.16 33.5107 36.7275 3.08657 30.4880 8.62788
0.17 31.3997 33.5702 . 769264 28.0596 5.99363
0.18 29.3348 30.5295 -1.50392 25.6588 3.47152
0.19 27.3162 27.5976 -3.73185 23.2890 1.04961
0.20 25.3440 24,7676 -5.91397 20,9533 -1.28201
0.21 23.4176 22.0329 -8.05015 .18.6537 -3.53172
0.22 21.5363 19.3879 ~-10.1406 16.3920 -5.70654
0.23 19.6992 16.8271 ~12.1858 14.1693 ~7.81245
0.24 17.9052 14.3460 ~14.1864 11.9865 -9,85455
0.25 16.1534 11.9399 -16.1432 9.84391 -11.8372

0.26 14.4425 9.60494 -18.0570 7.74188 ~-13.7644

0.27 12.7715 7.33739 -19.9289 6.68038 ~15.6393

0.28 11.1391 5.13385 -21.7598 3.65926 -17.4649

0.29 9.54414 2.99120 ~23.5507 1.67820 ~19.2439

0.30 7.98557 .906536 | =-25.3027 -.263203 -20.9785

* Nominal parameter values as indicated in Table A-2
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TABLE A-5
TWENTY-NODE MODEL, NOMINAL PARAMETER VALUES

419 0.5 BTU/hr°F 311,12 0.5 BTU/hr°F b17’21 1 ¢, .05 BTU/hr
A4 0.5 BTU/hr°F 11,14 0.5 BTU/hr°F b20,21 1 c, .05 BTU/hr
216 | 0-5 BTU/bx®F |aj, 15 | 0.5 BIU/hrF by 0 | .295] €3 | .05 BIU/hr
319 0.5 BTU/hr°F 312,18 0.5 BTU/hr°F b15’21 .295 . .05 BTU/hr
83 0.5 BTU/hr°F a13’14 0.5 BTU/hr°F b18,21 1.2 . .05 BTU/hr
32’15 0.5 BTU/hr°F 313,16 0.5 BTU/hr°F bl9,21 1.2 . .05 BTU/hr
244 0.5 BTU/hr°F al3,l8 0.5 BTU/hr®°F b8,21 .105 . .05 BTU/hr
a3¢ 0.5 BTU/hr°F 314’15 0.5 BTU/hr°F b16,21 .105 018 .05 BTU/hr
a,s 0.5 BTU/hr°F 315 16 0.5 BTU/hr°F b7’15 .048 Cig .05 BTU/hr
84,20 0.5 BTU/hr°F 316,17 0.5 BTU/hr°F b8,16 .048 C20 .05 BTU/hr
a56 0.5 BTU/hr°F 817’18 0.5 BTU/hr°F b7,16 036 Ql 100 BTU/hr
858 0.5 BTU/hr°F a17’20 0.5 BTU/hr°F b8,15 .036 Q2 100 BTU/hr
a5,20 0.5 BTU/hr°F a18’19 0.5 BTU/hr°F b7,18 .03 Q3 100 BTU/hr
a6’7 0.5 BTU/hr°F 819,20 0.5 BTU/hr°F b7,19 .035 Q4 100 BTU/hr
ase 0.5 BTU/hr°F b1,21 1 (no dimen.) b8,18 .035 Q5 150 BTU/hr
a7,10 0.5 BTU/hr°F b2,21 1 (no dimen.) b8,19 0.2 Q6 150 BTU/hr
agg 0.5 BTU/hr°F b3,21 1 (no dimen.) b15,18 0.2 Q7 150 BTU/hr
38,19 0.5 BTU/hr°F b4,21 1 (no dimen.) b15,19 0.2 Q8 150 BTU/hr
a9,lO 0.5 BTU/hr°F b9,21 1 (no dimen.) b16,19 0.2 Q17 300 BTU/hr
39,12 0.5 BTU/hr°F b10,21 1 (no dimen.) b16,18 0.04 Q18 300 BTU/hr
a9’19 0.5 BTU/hr°F b11,21 1 (no dimen.) ng 300 BTU/hr
a10,11 0.5 BTU/hr°F b12,21 1 (no dimen.) Q20 300 BTU/hr
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APPENDIX B. ERROR ASSESSMENT IN THERMAL SYSTEMS

B.1 INTRODUCTION

Any of the methods that is utilized to correct the parameters of
a thermal network must compare predicted and measured temperatures. If
these temperatures were known to be precise, it would be a simple matter
to identify those which do not compare exactly or those which fall outside

a specified tolerance band.

Unfortunately, temperature predictions are not precise but are
subject to variances in the input data and inaccuracies of the computa-
tional method. In a similar vein temperature measurements are not exact
but are subject to instrumentation, data processing, and recording error.
Thus any comparison between prediction and measurement must account for
the effects of these uncertainties in order to ascertain out-of-tolerance

temperatures.

Successful assessment of the uncertainty and approximation effects
on temperature will require an error examination in several categories:
(1) uncertainties and approximations in thermal analysis; (2) uncertainties
associated with the ground-based environment; (3) uncertainties in data
acquisition; and (4) uncertainties associated with the defined space
environmental conditions. Category (4) is required if predicted and
flight information are to be correlated. Categories (2) and (3) become
necessary when predicted and environmmental test information are to be

compared.

In the presentation to follow, the four categories are discussed
to some extent but the emphasis has been placed upon the uncertainties
and approximations in thermal analysis. The approximations include an
investigation on several numerical integration schemes that are available

on CINDA-3G.

Some of the information contained in the sections to follow is also
reported in other References (B-1, B-2). Some of the material has been

expanded to include more recent information.
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B.2 UNCERTAINTIES AND APPROXIMATIONS IN THERMAL ANALYSIS

The mathematical model and the solution technique may be precise
but the input information to these mathematical models are not known
exactly. In general, a nominal value is utilized but an uncertainty
bound should also be included. The term uncertainty as used here is the
one employed by Kline and McClintockB-3*. These authors define uncertainty

as a possible value the error might have.

Apart from the uncertainties of the input information are the approxi-
mations that must be utilized to translate the physical system to a
mathematical model and to obtain useful results from the governing equations
which are solved numerically. The errors due to these approximations are
subject to many considerations but perhaps the major ones are the cost,
the time, and the engineer who generates the mathematical model. 1In the
present thermal network correction study, the approximations are considered

to be small.

B.2.1 Uncertainty Interval in the Thermal-Geometrical Characteristics

Evaluation of the uncertainty interval for a variable is at best
a difficult task. The uncertainty of the variable must include the best
estimate of the true value as well as the magnitude of the error. The
use of standard deviation to describe uncertainties appears to be unrealistic
because single-sample experiments are often used in lieu of multiple-
sample experiments., Only a limited amount of information on the uncertainty
of variables used for spacecraft thermal analysis appears to be available.
The present effort being conducted at NASA/MSC will provide considerably
more informationB_A. Until more thermal property uncertainty information
becomes available, it will be necessary to estimate the magnitude of the

uncertainties wherever the void exists.

The input information to a mathematical model may be separated
conveniently into three categories: (1) thermophysical characteristics
of the test article; (2) thermal environment of a ground-based facility;

and (3) external environment in space.

* Superscript numbers preceded by the letter B refer to the references
at the end of the Appendix.



B.2.1.1 Thermophysical Properties

The thermophysical properties includé those under the general heading
of thermal radiation properties such as emittance and absorptance and others
such as thermal conductivity and density under the heading, heat transfer

and physical properties.
B.2.1.1.1 Thermal Radiation Properties

The thermal radiation properties of materials which include coatings
are subject to a number of errors that contribute to the uncertainties
of the property values. An obvious source of uncertainty is in the
measurement process. The experimental errors depend upon the geometry
of the system, the physical characteristics of the detectors and optical
elements, the thermal environment of the sample, etc.B_5 It is stated
in Reference B-5 that a general value of the uncertainty interval of
any sample cannot be given but for purposes of an uncertainty study
here the solar absorptance as, and the hemispherical emittance are
estimated to have an uncertainty interval of +0.02 subject of course
z; < 1.0. The uncertainty of the thermal
radiation property of materials found on a spacecraft is increased by

to the constraint that 0 <

other factors such as:

(1) Poor quality control (which allows wide variance in”thev
surface finish);

(2) Sample differences;
(3) Normal manufacturing and handling processes;
(4) Corrosive atmosphere before launch (or during storage); and

(5) Exposure to a deleterious environment during test such
as a carbon-arc source with its ultra-violet band, during
ascent and during the period in space.

The uncertainty interval due td the factors listed above is_difficult
to estimate, but it is probably greater thén +0.01. In additiom, it
should be recognized that the uncertainty of the spectrai intensity
distribution of the incident energy in general increases tﬁe coating
property variances of the irradiated surfaces. Needless to say, if
these coatings on the external surfaces have a flat response, the spectral
intensity distribution of the incoming external energy source is not

important.
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The thermal radiation properties are also temperature sensitive.B—6

If these values are known and utilized in the analysis, then errors

due to temperature changes do not occur. Unfortunately, a wealth of
information in this area is not available, particularly at low temperatures.
Below -50°F, the measurement errors‘can be ser:i.ous.B_7 The results of
Reference B-8 indicate that below -50°F, the change in emittance with
temperature may be large. However, it is not unusual to find surfaces

that reach temperatures much below -50°F; for example, a solar array

may reach a level as low as ~250°F and higher than 200°F.

Based upon the considerations discussed above, the uncertainty
interval for the hemispherical emittance and the solar absorptance is

estimated to be +.03.
B.2.1,1.2 1Interface Conductance

The interface conductance in structural joints and/or at component
mounting interfaces is subject to many factors which from practical
considerations is beyond precise control . Joint conductance variations
of supposedly identical joints are considerable. A number of analytical
studies and experimental programs are reported in technical literature,
Reference B-9 lists approximately 200 references on interface conductance
and related areas. Most of these reported studies are based on ideal

interfaces which are different from joints used in spacecraft design.B-lO to B-14

A considerable amount of experimental results of joints used in
aircraft is available as typified by References B-15, B-16, and B-17.
These tests were conducted in ajir. Some experimental results in a
vacuum of practical joints have been reported.B-lg to B-21  1pe variance
of a standard joint conductance can only be realistically estimated for
a specific joint based on experimental data. Contact conductance of
joints in the Apollo spacecraft is reported in References B-20 and B-21.
It is not unusual to find that the joint conductance of "identical"

joints differ more than 100%; perhaps for uncertainty studies, a

variance in the range +25% to +50% is realistic.
B.2.1.1.3 Thermal and Physical Properties
The thermal and physical property values (thermal conductivity,

heat capacity, and density) used in thermal analysis generally are
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handbook values. Quite often these properties are not known for the
specific material to be used; the use of "best'" available information
leads to significant errors. Even "batch" to "batch' differences may -
be appreciable. Aside from the errors due to material differences,
measurement errors are also significant.

The use of the accurate Bunsen-Type calorimeter 2 to measure the
heat capacity of a material yields values that have a variance of |
i}Z.B_ZS The accuracy of thermal conductivity values depends upon
many factors such as the type of material to be tested. The guarded
’hot plate methodB—24 has a reported accuracy of +5% for low temperature

thermal conductivity tests in the range of -320°F to +50°F.

If the property values as typically found in literature are used,

the variance is estimated to be +10%.
B.2.1.1.4 1Insulation

Insulation as defined here refers to multilayer insulation which
is found in several types such as crinkled Mylar and dimpled Mylar
(Dimplar).B_25 Although the use of insulation on spacecraft is
commonplace, design problems arise because of the lack of precise
information on the insulation characteristics. Effective conductance
through the insulation is not known precisely because important factors
such as packing density and edge effects cannot beé accurately controlled.
As a result, the prediction of the effective conductance with a small
variance is beyond the present state-of-the-art. At present, the
thermal control system in essence utilizes the insulation system to
minimize the heat flow by specifying a maximum allowable effective
conductance; specification of both an upper and a lower bound on the
insulation characteristics would lead to prediction difficulties. The
variance of the insulation system is subject to a large number of
factors, many of which are beyond precise control. In general, the
variance can be larger than +507 although it is reported in Reference B-26
for a Dimplar insulation system that an error in prediction was less

than +157 and repeatability was within +5% of the average.

Trapped gases within the insulation could lead to prediction
difficulties, especially in an environmental facility with only a low

vacuum capability. It should be recognized that the pressure within
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the insulation will be higher than the pressure within the chamber.
Unfortunately, a technique to measure insulation pressure in the free-

molecular region is not available at the present time.B—27

B.2.1.2 Geometric Characteristics

Dimensions of the test article are known quite accurately (better
than .017%); as a result dimensional uncertainties of the total test article
have very little effect on the uncertainties of the temperature. However,
the use of the lumped parameter technique will increase the dimensional
errors, particularly if the physical system is composed of complex geometric
configuration. This will be discussed further in a later paragraph
concerning thermal resistance. In a similar veinj; the shape factor from
one discrete area to another is subject to dimensional inaccuracies but

other factors may be more important; this will also be discussed subsequently.
B.2.1.3 Characteristics of a Louver System

An important component of an active thermal control system that
controls part of the heat flow from the spacecraft is a louver.B—28
Prediction of the louver thermal radiating characteristics is difficult;
however, analytical treatments are available in literature.B-29 to B-33
In general, experimental data is more reliable. The problem of prediction
is magnified considerable if an external source is incident on the

louver system, Some experimental data without incident energy are

B-30, B-33, & B-34

available, The result of Reference B-34 indicate

that the variance of the experimental information is approximately +10%.

B.2.2 Approximation in the Analytical Method

A spacecraft is not a simple geometric object with surface
characteristics that may be described by accurate analytical expressions;
on the contrary, a spacecraft is a complex system composed of a structural
shell of various shapes and design enveloping, to protect, components
"packed" within the confines of the shell. Each component, it may be
added, represents a thermal design challenge which perturbs the
placement of these components within the spacecraft (subject, of course,

to all spacecraft constraints).

An attempt to describe the thermal interchange within an enclosure

with the multitude of components and support structure for a distributive
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system would be almost prohibitive; the difficulties encountered would

be almost prohibitive; the difficulties encountered in the solution of

the thermal radiation-conduction coupled expressions would be beyond
present numerical techniques if accuracy of a high order were desired.

The alternatiﬁe and one that is commonly employed today is the lumped para-
meter system.B“33 Thus, analytical sophistication to improve thermal
prediction of a spacecraft are constrained by the discrete area approxima-

tion. Less complex systems are not subject to this constraint.
B.2.2.1 Lumped Parameter System

To a large extent, translation of the physical system to the

topological model consisting of a network with resistors and c::apacitorsB_SS’B_36
requires engineering judgement. Quite often budget limitations coupled with
core storage capacity of the computer dictate the number of nodes that may
be utilized. As a result the discrete areas larger than desired are often
used and transient solutions with less than maximum accuracy are found to
minimize computer run~time, This criticism should be tempered by the fact
that high accuracy is often secondary for many spacecraft thermal control

design. When a close temperature tolerance system is required, it becomes

necessary to examine those errors that are ordinarily assumed to be small.
B.2.2.1.1 Truncation Error

Truncation error is defined here to mean the temperature difference
between the exact solution of the distributive system and the exact

solution of the finite-difference expression which may be one of several
. . R . . B-

types such as explicit, implicit, and laternating direction. 37 For

the explicit forward difference technique, the truncation error E may

be expressed as:B_37

v At 32T (Ax)? 3T (ay)? AT 2
S AT 12 ¢ 12 T roun

E
(B-1)
+0O )" + Oy

Equation (B-1) indicates that the error due to the finite difference
approximation is a function of the grid size, the time increment, and
the temperature distribution which is the unknown that is to be found.

No attempt will be made to estimate this error at this time for 'typical'



spacecraft heat transfer problemé. However, indications of the truncation
error are given in Reference B~38 which examines a semi~infinite slab
numerically solved by an implicit method discussed in Reference B-39 and
in Reference B-40 (or Reference B-41) which employs a semi-discrete

analog (discrete spatially and continuous in time) to examine a finite
slab. Magnitudes of discretization errors in a finite difference solution

of the heat flow equation in a symmetric slab are presented in Reference
‘B-42.

In addition to the error at the nodal points, an error due to
interpolation between nodes arises. Usually, the temperature variation

between nodes is assumed to be linear; the maximum absolute wvalue of

this error due to linear interpolation, EI’ may be expressed as:B_35
Ax? | 3%t
|EI| max < =g i =z | (B-2)

B.2.2.1.2 Non Uniform Local Heat Flux

Another approximation error which is due to discretizing is the
assumption of constant radiosity for the discrete areas. The inaccuracies
can be expected to effect the temperature level and the temperature
distribution which is shown by equation (B-1) affects the truncation error.
The influence of non-uniform local heat flux on overall heat transfer
between a gray differential area parallel to a gray infinite plane was
studied in Reference B-43, The assumption of uniform local heat flux
appears to be adequate insofar as this geometry and the overall heat
flux calculations are concerned but its effects on the temperature
distribution remains to be studied. Thermal radiation exchange in three
systems, parallel plates, adjoint plates, and circular disks is studied
in Reference B-44, Significant variations in the local heat transfer

along a surface are reported.

The above discussion merely serves to indicate in spacecraft thermal
analysis that not only must the conductive aspects be considered in
arriving at the grid size, but the effects of non-uniform heat flux

must also be examined.
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B,2.2.2 Methods of Radiation Analysis

A brief review of analytical methods related to thermal radiation
analysis is presented in Referenée B-19. The number of technical papers
and books in this area is considerable; no attempt is made here to indicate
these references. Perhaps a single best source is Reference B-45 and a
very interesting one on radiation interchange factors is Reference B-46.
The difficulties encountered in assessing improved analytical techniques
for spacecraft thermal analysis are discussed in Reference B-1, Errors
in the input information and the inaccuracies of the environmental
facilities including the data acquisition system subordinate the

temperature correlation.
B.2.2.3 Stefan-Boltzmann Constant

The Stefan-Boltzmann constant employed in the expression for
radiation exchange is generally used in heat transfer calculations without
regard to its accuracy. Admittedly for most spacecraft thermal considerations,
the uncertainty interval of the Stefan-Boltzmann constant is not sufficient
to warrant undue examination. However, this uncertainty is important,
say in the design of a radiometer. It is reported in technical literature

that the variance of the Stefan-Boltzmann constant is about ip.é%.B_47 to B-49

B.2.3 ©Numerical Technique

The set of ordinary non-lineayx differential equations that arise
from the lumped parameter system can be solved realistically only by a
numerical method coupled with a high speed computer. -Accuracy and computer
time considerations have prompted a number of studies in the numerical
solution of the parabolic equation and the set of ordinary non-linear

differential equations associated with the lumped parameter system.(B_37’

B-50 to B-33) There does not appear to be a single best method since many
factors such as boundary conditions, accuracy, core storage and computer
run time must all be considered. A comparison of several finite
difference formulations is presented in Reference B-37. 1In Reference
B-53, six numerical methods were applied to a 3-node system. The methods
studied were: Euler, Heun, Runge-Kutta Fourth Order, Adams-Bashforth
Prediction, Milner-Simpson Predictor/Corrector (constant step-size) and
Heun (variable step-size). (The reader should refer to Reference B-~53
for Details).
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In the present study, no attempt was made to compare in a general
sense the various numerical integration techniques for errors that arise
from: (1) temperature truncation errors, arising from the discrete
temperature changes that occur at each node in each time step, for which
average values of temperature-dependent variables must be estimated;

(2) time truncation errors, arising from the use of discrete time steps
in the transient calculation, for which average values of time-dependent
variables must be estimated; (3) convergence errors, arising from the
use of an iterative method of solution for heat transfer for connected
special nodes such as zero capacity nodes; and (4) arithmetic truncation
errors, arising from accumulation of round-off errors and from the loss
of significant figures that occur when numbers having large difference
in values are involved in a calculation, or differences between number
of similar magnitude are calculated. A discussion of these errors is
presented in Reference B-54. Round-off errors are discussed in Reference
B-55 and B-56. Rather, in the present study, integration routines
presently available in CINDA-3G were studied.B_57 These subroutines

are denoted as follows:

(1) Steady State

CINDSS -- "Block" iterative method (a set of old
temperatures replaced by new (just calculated)
temperatures

CINDSL -- Successive point iteration (newest temperature

available is always utilized)

(2) Transient

CNFRWD ~-- Explicit forward differencing (Euler techn:i.que)B-_SS’B"59

CNBACK -- Implicit backward differencing (standard implicit
B-37
method)

CNFWBK -~ Implicit forward-backward (Crank-Nicholsen met:hod)B_57

These CINDA-3G subroutines were evaluated by using the 5- and 20-node
mathematical models described in Appendix A. Comparison of CINDSS and
CINDSL is presented in Table B-1. From an accuracy standpoint, both
methods yielded almost identical results. From a computer run-time

standpoint, the models (5- and 20-node models) were two small to
distinguish small differences in run-time.
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COMPARISON OF CINDSS AND CINDSL

TABLE B-1

Tive Node Model

Twenty-Node Model

Node{ CINDSS CINDSL Node| CINDSS CINDSL | Nodej CINDSS CINDSL
I(°F) T(°F) T(°F) T(°F) T(°F) T(°F)
k64.9220 64.9222 1 80.1167 80.1169| 11 |-24.0483 | -24.0480
114.569 114.569 2 61.0493 61.0494| 12 9.34294 9.34319
36.4349 36.4352 3 1105.356 105.356 13 | 62.6028 62.6033
62.1131 62,1135 4 1115,210 115.210 14 | 29.6337 29.6342
102,616 102.616 5 1271.639 271.640 15 | 50.3469 50.3472
-460 -460 6 1290.017 290.017 16 | 86.5191 86.5194
7 1193.056 193.056 17 1149.426 149.426
8 1202.329 202.329 18 1124.916 124.916
9 40,2435 40.2437 | 19 {151.270 151.270
10 12.6997 12,6999 20 }|179.001 179.001

21 | -460 -460
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The CNFRWD, CNBACK, and CNFWBK were studied on both the 5~ and
20-node models. However, only the results for the five-node model
are presented (Table B-2) since the results for the 5~ and 20-node models
are similar. Comparison of the three integration subroutines show
that the CNFWBK temperatures lag the CNFRWD temperatures and that the
CNFWBK temperatures oscillates for the time steps that were chosen.
The time step (.5) for both the CNFWBK and CNBACK was an order of
magnitude larger than the time step (.085) for CNFWRD. 1If the .5 time
step were reduced, the results for CNFWBK and CNBACK are expected to be
better., The oscillatory behavior of CNFWBK is believed to be caused
by the radiation exchange. It should be noted that CNFWBK was originally
formulated to handle linear conductors, not non-linear elements as present
in the five- and twenty-node models. A more detailed study of these

routines is necessary in order to resolve this problem.

B.3 UNCERTAINTIES ASSOCTATED WITH THE ENVIRONMENTAL FACILITY

The rapid expansion of the number of environmental facilities
coupled with rapid changes in the state-of-the-art solar radiation
simulation has created a variety of test facilities to fulfill a number

of diverse requirements.B_60’ B-61

As a result, each test facility
must be examined relative to its capabilities to provide the type as

well as the accuracy of the thermal environment.

Without the specifics of a particular facility, the uncertainties
of the thermal enviromment can only be discussed in generalities. It
should also be recognized that the uncertainties of the environmental
facilities are in many instances coupled with the data acquisition
uncertainties which is discussed in a subsequent section, The
discussion to follow will not be detailed since many published documents

are available on this subject.B'62 to B-72

B.3.1 Test Philosophies

A discussion on test philosophies is interjected here to explain
the usage of the term uncertainties as applied to environmental testing.
When a test article is subjected to an environmental test, generally,
one of the following two objectives is planned: (1) verification of

the "hardware"; and (2) verification of the mathematical model. The
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former requires accurate space simulation conditions often prevent
"hardware" verification. Any uncertainty that is present merely

compounds the correlation difficulties.

The important consideration in the verification of a mathematical
model is not the duplication of the expected space conditions but
rather the need for a describable chamber environment. Any uncertainty
associated with the environmental facility must be kep small, otherwise,
the temperature uncertainty interval becomes too broad. Verification
of the "hardware" requires duplication of the space conditions unless,
of course, it can be shown that less-than-ideal environmental conditions
are adequate., A more detailed discussion on test philosophies is

contained in Reference B-69.

B.3.2 Potential Sources of Uncertainties in the Chamber Environment

The potential sources of uncertainties in the environmental facility
are numerous; the more sophisticated the system, the larger the number
of potential sources of uncertainties. For example, a facility with
earth emission and albedo radiation simulators in addition to the solar
simulator is much more susceptible to environmental variances than a

facility with only a solar simulator.
B.3.2.1 Solar Simulator

The types of solar simulator available on the market and presented
being utilized in facilities are almost countless. At the beginning
carbon-arc sources were most frequently employed but recently the
trend has been away from carbon-arcs and toward Xenonm or mercury-xenon

lamps.
The solar simulator characteristics are discussed below:

(1) Magnitude of Incident Flux Density - Aside from the
capability of the solar simulator to maintain a
specified intensity level, the uncertainty is directly
related to the uncertainty of the data acquisition system,
in particular, the accuracy of the radiometer and the
recording equipment. This is discussed in paragraph 4.
The variance of the intensity due to the instability of
the source is directly related to the continuity of the
intensity measurement during the test. In many facilities,
the intensity is measured before and after a test and
sometimes less frequently. Intensity changes that may
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occur during a test are mever known. Significant temporal
instability is indicated by the results of Reference B-74
for a specific carbon-arc system. Xenon lamps have much
better temporal instability. The temporal stability scans
indicated a definite periodicity which is a function of
the positive carbon advancement. The results indicated

in intensity change of 10%.

(2) Uniformity of Incident Flux - Flux uniformity as used in
the present discussion refers to the equality of the
incident flux throughout the three dimensional region
occupied by the test article. Again, the uncertainties
of the spacewise intensity variation are directly
dependent upon the quantity and the quality of the measure-
ment system. Very often, spacéwise flux intensity measure-
ment are not made. If they are, the traverse is conducted
at very infrequent intervals. Spacewise intensity variations
of greater than 107 are not uncommon, The results of
Reference B-74 indicate spatial intensity variations greater
than 30% for a carbon-arc system.

(3) Spectral Energy Distribution - The spectral energy
distribution in the test volume has been of much concern
to users of solar simulators, Its importance is dependent
not only upon the spectral characteristics of the energy
irradiated surfaces but upon the test philosophy adopted
for the test. For the interested reader, effect of
solar simulation sources on the absorptance of several
spacecraft coatings is tabulated in Reference B-62.

(4) Other Considerations - Other characteristics such as
collimation and repeatability are either related to
the uncertainty of the flux intensity or to the
uncertainty associated with extraneous radiation.
These parameters will not be discussed individually.

B.3.2.2 Albedo, Earth Emission and Lunar

No attempt will be made to assess the uncertainties of these
secondary energy simulators. Several papers on this subject are listed

in the reference sect:i.on.B"75 to B-78

B.3.2.3 Chamber-Test Article Interactions

The thermal interactions between the test article and the chamber
including the solar simulator can be quite complex with a resultant
difficulty in defining thé thermal environment to the test article.
Many factors such as the geometry of the test article ‘and its size, the
optical system of the solar simulator, and the non-isothermal nature

of the cold wall contribute to intricacies of the thermal interactions.
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Needless to say, accurate assessment of the chamber environment must be
specific and general guidelines must be used only in that context. General
guidelines are reported in References B-63, B-65, B-66, and B-79 among

others. It will suffice here to merely mention potential sources of uncertain-

ties due to the test article-chamber thermal interactions. These include:
(1) extraneous solar reflection fron non-black walls;

(2) extraneous thermal radiation from uncooled mirrors,
ports, and other "hot" spots;

(3) interaction between the test article and the simulator.

B.4 EXPERIMENTAL ERRORS - DATA ACQUISITION

Errors associated with data acquisition range from fémperature
perturbations produced by a sensor to the inaccuracies of the recording
system, Clearly, an exhaustive treatment is beyond the intent of the
present study and yet an in-depth examination of the data acquisition
system to be employed for a thermal test is necessary to accurately
assess the experimental errors. Since neither the in-depth study nor the
particulars of the data acquisition system are available, the discussion
here can only hope to indicate, in generalities, the magnitude of expected

experimental errors.

B.4.1 Thermal Radiation Measurements

Parameters that describe the thermal radiation include: (1) spectral
intensity distribution; (2) intéhsity; (3) collimation; and (4) uniformity
of intensity. Radiometers are generally used to measure the intensity
and the uniformity., Special instrumentation is required to measure the

spectral irradiation and the collimation.
B.4.1.1 1Intensity and Uniformity

Radiometers’ are of various types, many of which are of the flat
surface variety. The accuracy of these radiometers are probably no
better than +2%. The problems of precision radiometry are reported in
References B-47, B-48, B-49. Measurement of solar simulator flux

intensity is discussed in Reference B-80.

A TRW developed Model 43A radiometer which is presently being used

in a number of environmental facilities in the country is accurate to
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about +2%. More recently and absolute cavity radiometer has been developed

with an accuracy better than 27 (Reference B-81),.

Eppley radiometers are commonly used for meadsuring total inténsity
from the solar simulator. The older Eppley pryoheliometers were subject
to large uncertainties are indicated by results of References B-82

and B-83. Apparently, the new Eppley radiometer is more trouble-free.

In addition to the radiometer accuracy, the recording precision is
estimated to be about +1%. As a result, the total system error for

measuring the flux intensity will be greater than +37%.
B.4.1.2 Spectral Distribution and Collimation

No attempt will be made to assess the accuracy of these measurements.
Reading material includes References B-74 and B-70; a collimation angle
measurement device is described in B-74 and spectral measurements in
B~74 and B-80. It should be recognized that the required accuracy of
the spectral distribution and the collimation is highly dependent upon
the spectral characteristics of the irradiated surfaces and upon the

geometric characteristics of the test article,

B.4.2 Temperature Measurements

Many ways are available for measuring temperatures of solid surfaces,
but thermocouples are by far the most commonly used. A number of factors
must be considered to arrive at the system accuracy of the temperature
measurements, Disruption of the measured surface by the presence of the
thermocouple and the effect of lead losses are studies in themselves
(References B-84 to B-87). Two other considerations are errors due to
the quality of the wire and the reference junction, For premium grade
wire (ISA specification) in the temperature range -75°F to 200°F, the
error is +3/4°F; for a regular grade, the error is +1-1/2°F. An
ice bath reference junction, well-designed and maintained, has an error
about +1°F. A coid junction compeﬂsator has an error that depends upon
the ambient range. Typically the error is 1% of the range within the

temperature bounds -65°F to 165°F.

The recording error depends upon the measured temperature, but
typically the error is about j}bF. Thus, the total system thermocoupie

error is about +3°F.
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B.5 UNCERTAINTIES ASSOCIATED WITH THE DEFINED SPACE ENVIRONMENTAL CONDITIONS

The primary source of thermal energy is the direct solar radiation
with albedo and earth emission being secondary sources. For an orbit
around the moon, lunar emission certainly becomes an important consideration.
Information on the variances associated with the natural thermal environment
in space contained in References B-63, B-88, and B-89 will be condensed

and augmented by more recent information.
B.5.1 Solar Model

(1) Magnitude of Incident Flux Density: For earth orbiting
and cis-lunar space vehicles, the solar flux ranges from
(1.034)S at perihelion to (.966)S at aphelion. The value
of the solar constant, S, which is the mean value, is the
subject at the present of much discussion,B-90, B-91 1n
the USA the results of Johnson is commonly used;,B‘92 the
solar constant is given as 442 Btu/hr ft? (2.0 cal/cm®-min)
with an uncertainty of +2%, In Europe, the evaluation of
Nicolet is widely used;—-B"93 the solar constant is considered
to be 437 Btu/hr £t? (1.98 cal/cm®-min) with an uncertainty
of +5%. The experiment results of Reference B-94 and B-95
suggest that the Johnson solar constant is high by 2.5% and
the Nicolet solar constant is high by 1.5%.

(2) Uniformity of Solar Flux: The solar energy incident upon
surfaces in the vicinity of the earth arrives with a radius
of curvature so large that the wave is assumed to be planar.

(3) Solar Flux Collimation: The terms collimation and decollimation
are subject to variety of interpretations. A discussion
of these terms is found in Reference B-96. The solar field
angle in the vicinity of the earth is 32 minutes of arc.

(4) Spectral Energy Distribution: In the wave length of
interest (for thermal analysis purposes), 0.2u to 3.0u,
the spectral energy distribution is known relatively well,
although there is some disagreement among inyestigators.
In the USA, the spectral model of JohnsonB-92 ig widely
used and in Europe, the model of NicoletB-93 jig popular.
The two distributions are shown in Figure 1; note that
large differences exist in the uv region. The results of
Reference B-94 and B-95 suggest that the Johnson model
below .6u is about 67 high,

B.5.2 Earth Emission

A number of factors such as cloud coverage (including height),
earth surface temperature, and moisture content of the atmosphere effect

the earth emission. The magnitude of this energy is a stong function of
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the latitude. In Reference B-87, a value in the range 75-78 Btu/hr ft?
for a polar orbit is suggested. Measurements from OGO-IT indicates a
variation from 79 Btu/hr ft? to 124 Btu/hr ft? with a mean value averaged
over a year for latitudes less than 30° of 101 Btu/hr ftz.B-97 Until
more data become available, it appeafs that the commonly used value of

68 Btu/hr ft? is consistent with prevailing information. Perhaps an
uncertainty interval of +30% should be attached. Additional reading

material includes References B-98 and B—99,

B.5.3 Albedo Radiation

Accurate analytical assessment of the albedo radiation is an extremely
difficult undertaking because of the number of variables and the unknown
factors involved. For a detailed discussion the reader is directed towards

References B-100 and B-101.

For the planet earth, an average albedo of approximately 387 is
commonly used although local variations are quite large, perhaps ranging
from 10%Z to 90%.

Reference B-99 reported a variation of albedo from 0.10 to 0.62
between 33°N and 33°S latitudes on March 1965 with an average albedo
of 0.29.

Lack of complete local albedo values coupled with analytical complexities
in predicing reflected radiation dictages the use of average albedo value.
The uncertainty in the use of the albedo radiation is increased further
by the lack of accurate information on the spectral intensity distribution
(References B-100, B-101, and B-102). Expediency tempered with engineering
judgement dictates the use of a spectral intensity pattern that is the
same as the direct solar radiation. An uncertainty interval of +257 in

the albedo appears to be a reasonable estimate.

B.5.4 Lunar Emission

The lunar emission from the moon to a spacecraft on its surface or
in a lunar orbit is of extreme importance. The present state-of-knowledge
about the emission characteristics of the moon is meager. Bi-directional
reflectance behavior of lunar-like materials indicates that the thermal

. B-10 .
emission has a directional flavor. 3 A recent lunar infrared scan

data reveal directional effects.B"104 Thermal engineering data from

B-19



Surveyor I indicate a non-Lambertion surface thermal emission ‘effects.B—flo5

At the present time, for thermal design analysis it is a common practice

to assume that lunar emission follows a cosine distribution. :

Perhaps a reasonable upper limit at the subsolar point is 433 Btu/hr ft2,

No attempt will be made to assess the uncertainty interval.
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APPENDIX C. OBSERVABILITY OF THERMAL NETWORKS

In general, the ability to carry out meaningful thermal network
correction is dependent on whether or not the network variables which
are observed or measured are functioﬁally dependent (in an appropriate
sense to be defined below) on the parameters and/or initial temperatures
whose values are to be corrected. Because of the very real possibility
that the appropriate functional dependence will not exist iﬁ situations
of engineering significance, it is important that some attentionkbe
given to the problem of ascertaining its existence or lack of existence.
In the terminology of modern systems theory, such a problem falls |

under the general heading observability in nonlinear systems. In this

section, the results of a brief investigatibn into the observability of
thermal networks is presented. These results are rather»inébmplete and
fragmentary, and they are presented at this time only to indicate the
nature and significance of the general problem of observability of non-
linear systems and its relevance to thermal network correction. Clearly,

much more effort could, and probably should, be applied in this area.

Consider a general thermal network which can be characterized

mathematically by a vector differential equation of the form
T = f(t,T,p) (c-1)

where the components of the vector T denote the temperatures at the
nodes of the network and the components of the parameter vector p
denote the values of the thermal conductances, thermal radiation
exchange coefficients, heét capacities, etc. for the network.* In the
general case certain of the parameters and initial temperatures can
be taken as being known (or hard) while the others are to be corrected
based on a set of temperature measurements or observations made
at selected nodes (i.e., are soft). Let p1 be the vector whose
components are the soft parameters. Similarly, let Ti be the vector
whose components are the hard initial temperatures while Tg is a vector
whose components are the soft initial temperatures. Finally,
let Tl(t) be the vector whose components are the temperatures

of the nodes which are measured and let Tz(t) denote a vector

* Tt is tacitly assumed here tha all inputs to the network are known
functions of time.



whose components are the temperatures of the nodes which are not
measured. It may or may not be true that Tl(to) = Ti and Tz(to) = T2
Then Equation (C-1) can be written in an expanded form as follows:

™ = e, 1,12, 0,02 (c-2)

. 2
T £2 (t, Tl Tz,pl,p ) (c-3)

If certain, rather nonrestrictive, conditions are imposed on the
functions fl( ) and f2( ), uhique solutions of Equations (C-2) and
(C-3) exist for any given set of values for Ti, Tg, pl, and p2.
Moreover, if Ti and p are assumed fixed and 'I‘o and p2 are assumed
variable, then the family of solutions of Equations (C—Z) and

(c-3) whlch are obtained by varying T2 and pz defines T (t)

and T (t) as functions of T2 and p2 for all t. Let the functions

so defined be denoted by the expressions

g (t, Tz,pz) (C-4)

2

()

() = g2(t,T ,p2) (c-5)

Now suppose a set of observations of Tl(t) are made at times tos Eyseees
ty and let {To(tk); k=0,...,N} denote this set of observations. Then
it is reasonable to define the observability of Ti and p2 as

follows.

Definition 1: T2 and p2 will be said to be simultaneously

observable relative to the set {T (t ) k=o0...,N}

if and only if the (nonlinear) algebralc equations

1 2 2
T(t) =8 (t >T sP )

1 _ 2
T (t)) = g (tl,To,p )

(C-6)

.l 1 2 2
() = g (£, T P

have a unique solution for Ti,and pz.



Definition 2: Ti,and p2 will be said to be simultaneously observable
at time T > t0 if and ‘only if there exists some N and
some set {t

k=0,...,N} with toﬁt T such that Equations

: <
k’ k—
(C-6) have a unique solution. Otherwise they will be
said to be unobservable. If Ts and p2 are unobservable
at time T for all T z_to, then they are simply said to

be unobservable.

s s ke . ce ml '
An obvious consequence of the above definitions is that if To and

2 S s e a . , .
p are uncbservable at time T then it is impossible to determine the

true values of Tg and p2 for the network from observations of Tl(t)

made on the interval [to;T].

The above is actually a special case of a more general question of
observability in nonlinear systems. This more general case can be
formulated analytically as follows. Let x(t) denote a n-vector

function of time which satisfies the differential equation
x = £(t,x,p) (c-7)

where p is a set of (constant) parameters. Let y(t) denote an m-vector
function of time whose components correspond a nonlinear measurements
of x(t), i.e.,

y(£) = h(x(t), t) (c-8)
By the same argument used in the special case above the family of
solutions of Equation (C-7) obtained by varying x(to) and p define
x(t) as an n-vector function of t, x(to), and p which will be denoted

by g(t,x(t),p); i.e.,

x(t) = g(t,x(to),p) (C-9)
Substitutions of Equation (C~9) and Equation (C-8), gives

y(t) = h(g(t,x(t ),p),t) (c-10)

Definition 3: The nonlinear system described by Equations (C-7) and
(C-8) will be said to be state observable at p relative
to the set of observations {y(tk); k=0,...,N} if and

only if the equationms



]

y(t) = h(g(t ,x(t ),p),t )
Y(t ) = h(G(t ,X(t ):P):t )
1 1 o 1 (c-11)

.
»

y (tN)

h(g (£, x(t_),p),tp)

have a unique solution for x(to).
Similarly

Definition 4: The nonlinear system described by Equation (C-7) and
(C-8) will be said to be state observable at time
T Z~to at p if and only if there exists some N and some set

ey k
have a unique solution for x(to).

k=0, ....,N, t <t < T} such that Equation (C-11)

Analogous to state observability, parameter observability can be defined

as follows:

Definition 5: The nonlinear system described by Equation C-7) -and (C-8)
will be said to be parameter observable for initial con-
dition x(to) at time T 2 t_ if and only if there exists
some N and some set {t; k=0,...,N,t <t < T} such that
Equation (C-11) have a unique solution for p. If
this unique solution is independent of x(t ) the system

will simply be said to be parameter observable.

Definition 6: The nonlinear system described by Equation (C-7) and
(C-8) will be said to be simultaneously state and
parameter observable for a set of observations
{y(tk); k=0,...,N} if and only if Equations (C-11)

have a unique solution for x(to) and p.

Several comments relative to Definitions 3-6 are in order before
returning to the special case of observability in thermal networks. First,
it can be shown rather easily that Definitions 3 and 4 are equivalent
to Kalman's definition of (state) observability for linear systems =

when Equations (C-7) and (C-8) are linear. However, they appear to

* Kalman, R.E., "New Methods and Results in Linear Prediction
and Filtering Theory, RIAS TR 61-1, Presented at the Symposium
on Engineering Application of Random Function Theory and Probability,
Purdue University, November 1960.
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offer some advantage even in this case because the meaning of observability
is more directly interpretable in engineering terms. Second Kalman's
definition of observability for linear systems is not directly abplicable
to parameter observability in most cases of engineering interest. This

is because, even though Equations (C-~7) and (C-8) may behlinear in x(t),
the parameter enters the problem in such a way that y(t ) is a nonlinear

function of p. This is illustrated by the simple scaler linear case where

x(t) = px(t) and y(t) = x(t) (c-12)
for which it can be shown that p(tk_to)
y(e) = x(t) = x(t ) e (Cc-13)

In this case, it is seen that y(tk) is an exponmential function of o

On the other hand, the usefulness of Kalman's definition hinged on the
fact that the y(tk) were linear functions the quantities to be determined
or estimated; i.e., linear functions of x(to) in his case. Finally,
Definitions 3 and 4 and especially Definitions 5 and 6 represent bona
fide generalizations of Kalman's definitions in a form which is: (1)
directly applicable to nonlinear systems with or without unknown or
poorly specified parameters and (2) immediately interpretable in terms

of the problem determlnlng or defining estimates of the initial
conditions and/or parameters of such systems. The implications of

these definitions will become apparent from the discussion to follow.

There is a close relationship between observability as defined
above and the ability to correct initial estimates or guesses of x(to)
and p based on observations y(tk). This relationship can be seen as
follows. Let‘z(to) and p denote initial estimates of x(to) and p.

Then define correctability in the following manner.

Definition 7; The estimates of‘g(to) and p will be said to be
correctable given a set of observation‘ {y(tk); k=0,...,N}
of the system if and only if it is possible to find
corrections 6x(t ) and 8p (which are functions of the
y(t )) such that x(t ) + 6x(t ) and E.+ dp are equal
to 1n1t1al conditlon and parameter values. which
produced the y(tk); i.e., such that x(td)‘= gﬁto) + 6x(to)
and p = p + &p.



The following conclusions can be established based on the above definitions.

Conclusion 1: In order for estimates zjto) and p to be correctable
given a set of observations {y(tk); k=0,...,N}, it is
necessary that the system be simultaneously state and

parameter observable given this set of observations,

Conclusion 2: Let the system be simultaneously state and parameter
observable given the set of observations {y(tk); k=0,...,N}

and let the mN - vector be defined by the relationship

v(t))

y = .

y(gy)
. .. oY . oY
Then, if the matrix [Bx(t y - ap] has rank equal to
the number of components of x(to) plus the number of
components of p, the estimates §jto) and p are correctable

for all gjto) and p in some neighborhood of x(to) and p.

Conclusion 1 follows from the observation that the existence of Sx(to)
and 8p, with the prescribed property is equivalent to the existence
of unique solutions of Equations (C-11). Conclusion 2 follows from

Conclusion 1 and use of the implicit function theorem.

As an example of a thermal network which is not correctable

consider the linear five node case described by the following equations

I, = alZ(TZ-Tl) + al3(T3—Tl) + 314(T4‘T1) + alS(TS—Tl)

Ty = a3y (T)=T3) + a3y (Ty=Ty) + ag, (T,~T3) + ay5(T5-Ty)



=)
L

.
{3 ]
.

I, = a51(Tl—T5) + e + a54(T4_TS>

where all of the a,, are all equal and where the a,, are taken to be

ij 3
the parameters., Direct observation of the equations indicates that
Tl through T3 are dependent only on T4 + T5 and similarly T4 and T5

are dependent only on T1 + T2 + T3. Hence, if T4 and T5 were initialized

at T+ § and T - §, respectively, then Ta(t) + TS(t) would be functions

of T4(to) and TS(to) only through their sum T4(to) + TS(to)° But, this

means that the system is not simultaneously state and parameter observable

for any set of observations of Tl(t) because T4(to) =T+ § and TS(to) =T - §
would satisfy Equations (C-6) for all §. That is, Equations (C-6) would

not have a unique solutions for Tz(to) and p and hence, by Conclusion 1

the values of T4(to) and TS(to) would not be correctable.
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APPENDIX D. ERROR EFFECTS: TEMPERATURES & MATRIX INVERSION

D.1 EFFECTS OF SMALL TEMPERATURE MEASUREMENT ERRORS

The effects of small temperature measurement errors for the

deterministic method presented in paragraph 3.1.1 can be computed as

follows:

Let the set of equations be expressed in the general matrix

form,

Ml {x} =0 (D-1)

where, [M] is the coefficient matrix

{x} is the parameter vector

If we let [Mo] and {xo} be the true coefficeints matrix and
parameter vector, respectively, and if we let M = [Mo] + [M] be
the coefficient matrix obtained by using noisy temperature measurements
and {x} = {xo} + {Ax} be the resulting {x} which is computed using

the noisy coefficient matrix [M], then
(Mb + AM)(xo + Ax) =0 (D-2)
Matrix algebra, use of equation (D-1) and the definition of
[M] yields:
[M]{XO} + [Ml{x} =0 (D-3)

Or,

{ax } = 17 a] {x }a i 17t iam]{x } (D-4)

Equation (D-4) indicates that the error in the parameter x is

approximately linear with error in the coefficient matrix M.

D.2 MATRIX INVERSION

The method of least squares discussed numerical round-off
difficulties (paragraph 4.1.1). In particular the manner in which
the coefficient matrix was inverted yielded surprisingly different
results. The three matyix inversion subroutines may be described

as follows:



All three subroutines, S@PLVIT, INVRSE, and GJR use the same
basic principle--i.e., reduction of the original matrix to the
identity matrix By elementary row (or column) operations; the
corresponding elementary operations on the identity matrix produce
the inverse matrix*. Symbolically

[A,1] ~ [1,A71].

The elementary operations discussed above are either: (1)
division of a row by the diagonal element or (2) addition of a linear
combinational of one row to another row. The matrices may be inverted
in their own space by shifting each row left by one column as it is
being reduced. Row interchange means that the largest element in
a particular column of the unreduced matrix is used as the diagonal
element. In row and column interchange the largest element
of the entire unreduced matrix is used as the diagonal element.

Both INVRSE and GJR yield the inverse explicitly whereas the subroutine
SPLVIT augments the coefficient matrix [A] with the forcing function {B}.
The process of reducing the matrix [A] to the identity matrix with

corresponding operations on B produces the solution vector [x] in [B].

[A;B] +[I;x]

* Froberg, C. E., Introduction of Numerical Analysis, 1965 Addison-Wesley

Kelly, L. G., Handbook of Numerical Methods and Application. 1967,
Addison-Wesley.




